Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The destruction of pulmonary epithelium is a major feature of lung diseases caused by the fungal pathogen Aspergillus fumigatus (A. fumigatus). Gliotoxin, a major mycotoxin of A. fumigatus, is widely postulated to be associated with the tissue invasion. However, the mechanism is unclear. In this study, we first discovered that cofilin, a regulator of actin dynamics in the pulmonary epithelial cells, existed mainly in the form of oligomer, which kept it unable to depolymerize actin filaments. Gliotoxin could reduce the formation of cofilin oligomer and promote the release of active cofilin monomer by regulating cofilin phosphorylation balance. Then, the active cofilin induced the dissolution of actin stress fibers to result in the disruption of pulmonary epithelium barrier function. Collectively, our study revealed a novel mechanism of gliotoxin destructing lung epithelium barrier function and for the first time indicated the role of cofilin oligomer in this process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2018.07.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!