Synaptic plasticity in human cortical circuits: cellular mechanisms of learning and memory in the human brain?

Curr Opin Neurobiol

Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Amsterdam, VU University Amsterdam, The Netherlands.

Published: February 2019

AI Article Synopsis

  • Synaptic plasticity is key to understanding learning and memory in the adult human brain, but studying it is challenging due to limited access to live human neurons.
  • Research methods have yielded insights into the properties and plasticity of adult human synapses, uncovering some surprising findings.
  • This text explores experimental approaches, mechanisms of Hebbian spike timing-dependent plasticity (STDP), and how these principles relate to human learning and memory.

Article Abstract

Synaptic plasticity is the cellular basis of learning and memory, but to what extent this holds for the adult human brain is not known. To study synaptic plasticity in human neuronal circuits poses a huge challenge, since live human neurons and synapses are not readily accessible. Despite this, various lines of research have provided insights in properties of adult human synapses and their plasticity both in vitro and in vivo, with some unexpected surprises. We first discuss the experimental approaches to study activity-dependent plasticity of adult human synapses, and then highlight rules and mechanisms of Hebbian spike timing-dependent plasticity (STDP) found in these synapses. Finally, we conclude with thoughts on how these synaptic principles can underlie human learning and memory.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.conb.2018.06.013DOI Listing

Publication Analysis

Top Keywords

synaptic plasticity
12
learning memory
12
adult human
12
human
8
plasticity human
8
human synapses
8
plasticity
5
synaptic
4
human cortical
4
cortical circuits
4

Similar Publications

Our previous in silico data indicated an overrepresentation of the ZF5 motif in the promoters of genes in which circadian oscillations are altered in the ventral hippocampus in the pilocarpine model of temporal lobe epilepsy in mice. In this study, we test the hypothesis that the Zbtb14 protein oscillates in the hippocampus in a diurnal manner and that this oscillation is disrupted by epilepsy. We found that Zbtb14 immunostaining is present in the cytoplasm and cell nuclei.

View Article and Find Full Text PDF

Synaptic plasticity plays a fundamental role in neuronal dynamics, governing how connections between neurons evolve in response to experience. In this study, we extend a network model of θ-neuron oscillators to include a realistic form of adaptive plasticity. In place of the less tractable spike-timing-dependent plasticity, we employ recently validated phase-difference-dependent plasticity rules, which adjust coupling strengths based on the relative phases of θ-neuron oscillators.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an αβ nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function.

View Article and Find Full Text PDF

How does chronic pain lead to memory loss?

Elife

January 2025

Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

A dysfunctional signaling pathway in the hippocampus has been linked to chronic pain-related memory impairment in mice.

View Article and Find Full Text PDF

Gamma oscillations are disrupted in various neurological disorders, including Alzheimer's disease (AD). In AD mouse models, non-invasive audiovisual stimulation (AuViS) at 40 Hz enhances gamma oscillations, clears amyloid-beta, and improves cognition. We investigated mechanisms of circuit remodeling underlying these restorative effects by leveraging the sensitivity of hippocampal neurogenesis to activity in middle-aged wild-type mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!