Tubulin genes and malformations of cortical development.

Eur J Med Genet

Department of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK. Electronic address:

Published: December 2018

A large number of genes encoding for tubulin proteins are expressed in the developing brain. Each is subject to specific spatial and temporal expression patterns. However, most are highly expressed in post-mitotic neurons during stages of neuronal migration and differentiation. The major tubulin subclasses (alpha- and beta-tubulin) share high sequence and structural homology. These globular proteins form heterodimers and subsequently co-assemble into microtubules. Microtubules are dynamic, cytoskeletal polymers which play key roles in cellular processes crucial for cortical development, including neuronal proliferation, migration and cortical laminar organisation. Mutations in seven genes encoding alpha-tubulin (TUBA1A), beta-tubulin (TUBB2A, TUBB2B, TUBB3, TUBB4A, TUBB) and gamma-tubulin (TUBG1) isoforms have been associated with a wide and overlapping range of brain malformations or "Tubulinopathies". The majority of cortical phenotypes include lissencephaly, polymicrogyria, microlissencephaly and simplified gyration. Well-known hallmarks of the tubulinopathies include dysmorphism of the basal ganglia (fusion of the caudate nucleus and putamen with absence of the anterior limb of the internal capsule), midline commissural structures hypoplasia and/or agenesis (anterior commissure, corpus callosum and fornix), hypoplasia of the oculomotor and optic nerves, cerebellar hypoplasia or dysplasia and dysmorphism of the hind-brain structures. The cortical and extra-cortical brain phenotypes observed are largely dependent on the specific tubulin gene affected. In the present review, all the published data on tubulin family gene mutations and the associated cortical phenotypes are summarized. In addition, the most typical neuroimaging patterns of malformations of cortical development associated with tubulin gene mutations detected on the basis of our own experience are described.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmg.2018.07.012DOI Listing

Publication Analysis

Top Keywords

cortical development
12
malformations cortical
8
genes encoding
8
cortical phenotypes
8
tubulin gene
8
gene mutations
8
cortical
7
tubulin
6
tubulin genes
4
genes malformations
4

Similar Publications

The link of FOXO1 and FOXO4 transcription factors to development of the lens.

Dev Dyn

January 2025

Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

Background: The FOXOs regulate the transcription of many genes, including ones directly linked to pathways required for lens development. However, this transcription factor family has rarely been studied in the context of development, including the development of the lens. FOXO expression, regulation, and function during lens development remained unexplored.

View Article and Find Full Text PDF

Background: Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental outcome among children with a history of early institutional care. Prior research on institutionalized children suggested that accelerated physical growth in childhood is a risk factor for ADHD outcomes.

Methods: The current study examined physical and neurophysiological growth trajectories among institutionalized children randomized to foster care treatment (n = 59) or care as usual (n = 54), and never institutionalized children (n = 64) enrolled in the Bucharest Early Intervention Project (NCT00747396, clinicaltrials.

View Article and Find Full Text PDF

Kenny-Caffey Syndrome Type 2 (KCS2): A New Case Report and Patient Follow-Up Optimization.

J Clin Med

December 2024

Division of Endocrinology, Diabetes and Metabolism, ENDO-ERN Center for Rare Pediatric Endocrine Disorders, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece.

Kenny-Caffey syndrome 2 (KCS2) is a rare cause of hypoparathyroidism, inherited in an autosomal dominant mode, resulting from pathogenic variants of the gene, which is implicated in intracellular pathways regulating parathormone (PTH) synthesis and skeletal and parathyroid gland development. : The case of a boy is reported, presenting with the characteristic and newly identified clinical, biochemical, radiological, and genetic abnormalities of KCS2. : The proband had noticeable dysmorphic features, and the closure of the anterior fontanel was delayed until the age of 4 years.

View Article and Find Full Text PDF

Investigating the physiological mechanisms in the motor cortex during rehabilitation exercises is crucial for assessing stroke patients' progress. This study developed a single-channel Jansen neural mass model to explore the relationship between model parameters and motor cortex mechanisms. Firstly, EEG signals were recorded from 11 healthy participants under 20%, 40%, and 60% maximum voluntary contraction, and alpha rhythm power spectral density characteristics were extracted using the Welch power spectrum method.

View Article and Find Full Text PDF

The Three-Class Annotation Method Improves the AI Detection of Early-Stage Osteosarcoma on Plain Radiographs: A Novel Approach for Rare Cancer Diagnosis.

Cancers (Basel)

December 2024

Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan.

: Developing high-performance artificial intelligence (AI) models for rare diseases is challenging owing to limited data availability. This study aimed to evaluate whether a novel three-class annotation method for preparing training data could enhance AI model performance in detecting osteosarcoma on plain radiographs compared to conventional single-class annotation. : We developed two annotation methods for the same dataset of 468 osteosarcoma X-rays and 378 normal radiographs: a conventional single-class annotation (1C model) and a novel three-class annotation method (3C model) that separately labeled intramedullary, cortical, and extramedullary tumor components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!