A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Copper-CX-5461: A novel liposomal formulation for a small molecule rRNA synthesis inhibitor. | LitMetric

Copper-CX-5461: A novel liposomal formulation for a small molecule rRNA synthesis inhibitor.

J Control Release

Experimental Therapeutics, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Cuprous Pharmaceuticals Inc., Vancouver, BC, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada; Centre for Drug Research and Development, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.

Published: September 2018

CX-5461 is currently in Phase I/II clinical trials for advanced hematologic malignancies and triple negative or BRCA-deficient breast cancer. The compound is currently administered to patients intravenously (i.v.) at low pH (3.5) due to solubility challenges. Reliance of low pH to enhance solubility of CX-5461 can adversely impact pharmacokinetics, biodistribution and therapeutic potential. We have addressed this solubility issue through a formulation method that relies on the interactions between CX-5461 and copper. Copper binds CX-5461 through the nitrogens of the pyrazine ring. Here, we describe synthesizing this copper-complexed CX-5461 (Cu(CX-5461)) within liposomes. CX-5461 was added to copper-containing liposomes and incubated at 60 °C for 30 min. The pharmacokinetics of CX-5461 was assessed in mice following a single i.v. injection at 30 mg/kg. Efficacy studies were completed in multiple subcutaneous mouse xenografts as well as in a bone marrow engraftment model of acute myeloid leukemia (AML). The novel Cu(CX-5461) formulation was stable at pH 7.4 and exhibited increased plasma circulation longevity, increasing the total exposure to CX5461 by an order of magnitude. Cu(CX-5461) was more active than CX-5461 in AML models in vivo. In HCT116-B46 and Capan-1 solid tumour models that are BRCA-deficient, the Cu(CX-5461) formulation engendered activity that was comparable to that of the low pH CX-5461 formulation. We have generated the first Cu(CX-5461) formulation suitable for i.v. administration that is more efficacious than the existing low-pH formulation in pre-clinical models of AML. The Cu(CX-5461) formulation may serve as an alternative formulation for CX-5461 in BRCA-deficient cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2018.07.025DOI Listing

Publication Analysis

Top Keywords

cucx-5461 formulation
16
cx-5461
10
formulation
9
cucx-5461
6
copper-cx-5461 novel
4
novel liposomal
4
liposomal formulation
4
formulation small
4
small molecule
4
molecule rrna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!