Botulinum neurotoxins (BoNTs) inhibit the release of the neurotransmitter acetylcholine from motor neurons, resulting in highly effective muscle relaxation. In clinical and aesthetic medicine, serotype BoNT/A, which is most potent for humans, is widely used to treat a continuously increasing spectrum of disorders associated with muscle overactivity. Because of the high toxicity associated with BoNTs, it is mandatory to precisely determine the potency of every batch produced for pharmaceutical purposes. Here we report a new quantitative functional in vitro assay for BoNT/A. In this binding and cleavage (BINACLE) assay, the toxin is first bound to specific receptor molecules. Then a chemical reduction is performed, thereby releasing the light chain of BoNT/A and activating its proteolytic domain. The activated light chain is finally exposed to its substrate protein SNAP-25, and the fragment resulting from the proteolytic cleavage of this protein is quantified in an antibody-mediated reaction. The BoNT/A BINACLE assay offers high specificity and sensitivity with a detection limit below 0.5 mouse lethal dose (LD)/ml. In conclusion, this new in vitro assay for determining BoNT/A toxicity represents an alternative to the LD test in mice, which is the "gold standard" method for the potency testing of BoNT/A products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2018.07.008DOI Listing

Publication Analysis

Top Keywords

vitro assay
8
binacle assay
8
light chain
8
bont/a
6
vitro potency
4
potency determination
4
determination botulinum
4
botulinum neurotoxin
4
neurotoxin serotype
4
serotype based
4

Similar Publications

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

Background: Resistance to temozolomide (TMZ) remains is an important cause of treatment failure in patients with glioblastoma multiforme (GBM). ADAR1, as a member of the ADAR family, plays an important role in cancer progression and chemotherapy resistance. However, the mechanism by which ADAR1 regulates GBM progression and TMZ resistance is still unclear.

View Article and Find Full Text PDF

Gallbladder cancer is the most prevalent malignancy of the biliary tract and has a dismal overall survival even in the present day. The development of new drugs holds promise for improving the prognosis of this lethal disease. The possible anti-neoplastic role of morusin was investigated both in vitro and in vivo.

View Article and Find Full Text PDF

The sulfur-related metabolic status of during infection reveals cytosolic serine hydroxymethyltransferase as a promising antifungal target.

Virulence

December 2025

Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.

Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!