Facile fabrication of silver nanoparticle decorated α-FeO nanoflakes as ultrasensitive surface-enhanced Raman spectroscopy substrates.

Anal Chim Acta

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: May 2018

Although great progress has been made on designing noble metal nanoparticle aggregates/assemblies as surface-enhanced Raman spectroscopy (SERS) substrates, an ever increasing research interest has focused on fabrication of hierarchical nanostructures for superior SERS performance. Here, we report effective decoration of silver nanoparticles (AgNPs) onto vertically and densely grown α-FeO nanoflakes (NFs) as SERS active substrates. The SERS substrate was prepared by thermally annealing Fe foil at 450 °C to grow α-FeO NFs and electroless deposition of AgNPs onto α-FeO NFs, with excellent ability to control the particle size and density. The AgNP-decorated α-FeO NFs offer high density hot spots and exhibited high SERS performance with enhancement factor of 8.1 × 10. Integration of α-FeO nanostructure functions as intrinsic internal standard and selective binder for specific analytes like the toxic arsenic. The substrate was successfully used for quantitative detection of arsenic with spatial uniformity (relative standard deviation, RSD, 8.8%) and good reproducibility (RSD, 9.7%). The Raman signal of α-FeO integrated to the SERS substrate was utilized as internal standard which significantly improves reproducibility. The substrate exhibited a high sensitivity for arsenic detection with a limit of detection down to 1.5 μg L, which is much lower than permissible limit (10 μg L) set by the WHO. Moreover, the SERS substrates showed excellent practicability and selectivity for determination of arsenic in environmental waters which is valuable for environmental and human health protection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2017.12.003DOI Listing

Publication Analysis

Top Keywords

α-feo nfs
12
α-feo nanoflakes
8
surface-enhanced raman
8
raman spectroscopy
8
sers substrates
8
sers performance
8
sers substrate
8
exhibited high
8
internal standard
8
α-feo
7

Similar Publications

Peony-shaped zinc oxide nanoflower synthesized via hydrothermal route exhibits promising anticancer and anti-amyloid activity.

BMC Pharmacol Toxicol

December 2024

Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India.

Background: Cancer is the deadliest disease, and neurological disorders are also marked as slow progressive diseases, ultimately leading to death. Stopping two mouths with one morsel was the strategy that we used in this study.

Methods: We have synthesized peony-shaped zinc oxide nanoflowers (ZnO-NFs) and characterized them using various photophysical tools like UV-vis spectroscopy, zeta potential analysis, dynamic light scattering (DLS), FTIR, and scanning electron microscopy (SEM), and utilized these nanoflowers to monitor their anticancer and anti-amyloid activity.

View Article and Find Full Text PDF

Chiral molecules are ubiquitous in nature and biological systems, where the unique optical and physical properties of chiral nanoparticles are closely linked to their shapes. Synthesizing chiral plasmonic nanomaterials with precise structures and tunable sizes is essential for exploring their applications. This study presents a method for growing three-dimensional chiral gold nanoflowers (Au NFs) derived from trisoctahedral (TOH) nanocrystals using D-cysteine and L-cysteine as chiral inducers.

View Article and Find Full Text PDF

Drug-loaded liposomes incorporated in nanofibrous scaffolds is a promising approach as a multi-unit nanoscale system, which combines the merits of both liposomes and nanofibers (NFs), eliminating the drawback of liposomes' poor stability on the one hand and offering a higher potential of controlled drug release and enhanced therapeutic efficacy on the other hand. The current systematic review, which underwent a rigorous search process in PubMed, Web of Science, Scopus, Embase, and Central (Cochrane) employing (Liposome AND nanofib* AND electrosp*) as search keywords, aims to present the recent studies on using this synergic system for different therapeutic applications. The search was restricted to original, peer-reviewed studies published in English between 2014 and 2024.

View Article and Find Full Text PDF

Designing Ru-B-Cr Moieties to Activate the Ru Site for Acidic Water Electrolysis under Industrial-Level Current Density.

Nano Lett

December 2024

Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.

Developing highly efficient non-iridium-based active sites for acidic water splitting is still a huge challenge. Herein, unique Ru-B-Cr moieties have been constructed in RuO nanofibers (NFs) to activate Ru sites for water electrolysis, which overcomes the bottleneck of RuO-based catalysts usually possessing low activity for the hydrogen evolution reaction (HER) and poor stability for the oxygen evolution reaction (OER). The fabricated Cr, B-doped RuO NFs exhibit low overpotentials of 205 and 379 mV for acidic HER and OER at 1 A cm with outstanding stability lasting 1000 and 188 h, respectively.

View Article and Find Full Text PDF

Patients with rheumatoid arthritis (RA), an inflammatory illness that affects the synovial joints, have a much worse quality of life. Mostly, oral or injectable formulations are used to treat RA, underscoring the critical need for an innovative medication delivery method to enhance therapeutic outcomes and patient compliance. The present study integrated 3D bioprinting and electrospinning technologies to create a unique double-layered transdermal patch (TDDP) for the treatment of RA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!