Cerebral arterial gas embolism (CAGE) shows various manifestations according to the quantity of gas and the brain areas affected. The symptoms range from minor motor weakness, headache, and confusion to disorientation, convulsions, hemiparesis, unconsciousness, and coma. A 46-year-old man was transferred to our emergency department due to altered sensorium. Immediately after a controlled ascent from 33 m of seawater, he complained of shortness of breath and rigid extremities, lapsing into unconsciousness. He was intubated at another medical center, where a brain computerized axial tomography scan showed no definitive abnormal findings. Pneumothorax and obstructing lesions were apparent in the left thorax of the computed tomography scan. Following closed thoracostomy, we provided hyperbaric oxygen therapy (HBOT) using U.S. Navy Treatment Table (USN TT) 6A. A brain magnetic resonance imaging diffusion image taken after HBOT showed acute infarction in both middle and posterior cerebral arteries. We implemented targeted temperature management (TTM) to prevent worsening of cerebral function in the intensive care unit. After completing TTM, we repeated HBOT using USN TT5 and started rehabilitation therapy. He fully recovered from the neurological deficits. This is the first case of CAGE treated with TTM and consecutive HBOTs suggesting that TTM might facilitate salvage of the penumbra in severe CAGE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6138372 | PMC |
http://dx.doi.org/10.1089/ther.2018.0010 | DOI Listing |
J Econ Entomol
January 2025
Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou, China.
The Anoplophora chinensis (Coleoptera: Cerambycidae) (Forster), a serious phytophagous pest threatening Castanea mollissima Blume and Castanea seguinii Dode, poses risks of ecological imbalance, significant economic loss, and increased management difficulties if not properly controlled. This study employs optimized MaxEnt models to analyze the potential distribution areas of A. chinensis and its host plants under current and future climate conditions, identifying their movement pathways and relative dynamics.
View Article and Find Full Text PDFJ Food Sci
January 2025
College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China.
Pleurotus ostreatus is a nutrient-dense edible fungus renowned for its delicate texture, appealing flavor, and numerous potential health benefits. Simultaneous extraction within the framework of food resource processing facilitates the concurrent isolation and analysis of multiple target compounds. In this study, an ethanol/salt aqueous two-phase system (ATPS) was employed to extract polysaccharides (PS) and proteins from P.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Life and Consumer Sciences, University of South Africa, Johannesburg, South Africa.
Exploring drought dynamics has become urgent due to unprecedented climate change. Projections indicate that drought events will become increasingly widespread globally, posing a significant threat to the sustainability of the agricultural sector. This growing challenge has resulted in heightened interest in understanding drought dynamics and their impacts on agriculture.
View Article and Find Full Text PDFBiochem J
January 2025
Universiteit Gent, Ghent, Belgium.
Thiamin, an essential micronutrient, is a cofactor for enzymes involved in the central carbon metabolism and amino acids pathways. Despite efforts to enhance thiamin content in rice by incorporating thiamin biosynthetic genes, increasing thiamin content in endosperm remains challenging, possibly due to a lack of thiamin stability and/or a local sink. The introduction of storage proteins has been successful in biofortification strategies and similar efforts targeting thiamin led to a 3-4-fold increase in white rice.
View Article and Find Full Text PDFACS Sens
January 2025
Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
Semiconductor metal oxide (SMO) gas sensors are gaining prominence owing to their high sensitivity, rapid response, and cost-effectiveness. These sensors detect changes in resistance resulting from oxidation-reduction reactions with target gases, responding to a variety of gases simultaneously. However, their inherent limitations lie in selectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!