Objective Unexplained chronic cough (UCC) is a perplexing condition treated with neuromodulators. Although previous literature describes the effectiveness of neuromodulators, there is little on the development of tachyphylaxis or dependence to neuromodulators over time. Our objective is to capture the experience of a large cohort of patients with UCC over an extended period, looking for these 2 phenomena. Study Design Case series with chart review. Setting Tertiary care hospital. Subjects and Methods We performed a retrospective review of patients diagnosed with UCC from 2010 to 2014. Patient outcomes were measured through percentage improvement scores. Treatment failures were attributed to no benefit, intolerable side effects, or tachyphylaxis. Tachyphylaxis was defined as the need for higher doses of medication following diminishing therapeutic benefit, while dependence was defined as a failure to stop therapy following attempted de-escalation or resurgence following drug cessation. Results Sixty-eight patients were included in the study. Tachyphylaxis was observed among 35% of patients while dependence was observed among 27% of successfully treated patients, together effecting >50% of the cohort. Sixty-eight percent of patients ultimately experienced successful treatment with neuromodulators, demonstrating strikingly distinct responses to different neuromodulator drug classes. Conclusion Tachyphylaxis and dependence occur frequently during UCC treatment and have a major impact on treatment outcomes. Patients sometimes demonstrate distinct responses to different neuromodulator classes. The majority of patients will experience successful treatment for their cough, although several trials may be required.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0194599818788062DOI Listing

Publication Analysis

Top Keywords

tachyphylaxis dependence
12
unexplained chronic
8
chronic cough
8
patients
8
successful treatment
8
distinct responses
8
responses neuromodulator
8
tachyphylaxis
6
treatment
5
dependence pharmacotherapy
4

Similar Publications

The N-terminal portion of the octapeptide angiotensin II (DRVYIHPF; AngII), a vasopressor peptide that favorably binds to, and activates, AngII type 1 receptor (ATR), has an important role in maintaining bioactive conformation. It involves all three charged groups, namely (i) the N-terminal amino group cation, (ii) the Asp sidechain anion and (iii) the Arg guanidino cation. Neutralization of any one of these three charged groups results in a substantial reduction (<5%) in bioactivity, implicating a specialized function for this cluster.

View Article and Find Full Text PDF

Acid-sensing ion channels (ASICs) are proton-gated cation channels that contribute to fast synaptic transmission and have roles in fear conditioning and nociception. Apart from activation at low pH, ASIC1a also undergoes several types of desensitization, including acute desensitization, which terminates activation; steady-state desensitization, which occurs at sub-activating proton concentrations and limits subsequent activation; and tachyphylaxis, which results in a progressive decrease in response during a series of activations. Structural insights from a desensitized state of ASIC1 have provided great spatial detail, but dynamic insights into conformational changes in different desensitizing conditions are largely missing.

View Article and Find Full Text PDF

Background: Tirzepatide is a dual glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor agonist (RA) whose mechanism of action leads to a greater effect of gastric emptying (GE) than typical GLP-1 RAs. After the first dose of tirzepatide, GE is most substantially delayed. The drug then undergoes tachyphylaxis after subsequent doses.

View Article and Find Full Text PDF

Agonists and hydrogen peroxide mediate hyperoxidation of β2-adrenergic receptor in airway epithelial cells: Implications for tachyphylaxis to β2-agonists in constrictive airway disorders.

Biomed Pharmacother

December 2023

Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA 30341, USA; Department of Biomedical Sciences, School of Medicine, Mercer University Health Sciences Center, Mercer University, Macon, GA 31207, USA. Electronic address:

Asthma and other airway obstructive disorders are characterized by heightened inflammation and excessive airway epithelial cell reactive oxygen species (ROS), which give rise to a highly oxidative environment. After decades of use, β2-adrenergic receptor (β2AR) agonists remain at the forefront of treatment options for asthma, however, chronic use of β2-agonists leads to tachyphylaxis to the bronchorelaxant effects, a phenomenon that remains mechanistically unexplained. We have previously demonstrated that β2AR agonism increases ROS generation in airway epithelial cells, which upholds proper receptor function via feedback oxidation of β2AR cysteine thiolates to Cys-S-sulfenic acids (Cys-SOH).

View Article and Find Full Text PDF

Chromosomal instability (CIN) is a driver of cancer metastasis, yet the extent to which this effect depends on the immune system remains unknown. Using ContactTracing-a newly developed, validated and benchmarked tool to infer the nature and conditional dependence of cell-cell interactions from single-cell transcriptomic data-we show that CIN-induced chronic activation of the cGAS-STING pathway promotes downstream signal re-wiring in cancer cells, leading to a pro-metastatic tumour microenvironment. This re-wiring is manifested by type I interferon tachyphylaxis selectively downstream of STING and a corresponding increase in cancer cell-derived endoplasmic reticulum (ER) stress response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!