Inflammasomes are multiprotein inflammatory platforms that induce caspase-1 activation and subsequently interleukin (IL)-1β and IL-18 processing. The NLRP3 inflammasome is activated by different forms of oxidative stress, and, based on the central role of IL-1β in the destruction of pancreatic islets, it could be related to the development of diabetes. We therefore investigated responses in wild-type C57Bl/6 (WT) mice, NLRP3 mice, and mice deficient in apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) after exposing islets to short-term hypoxia or alloxan-induced islet damage. NLRP3-deficient islets compared with WT islets had preserved function ex vivo and were protected against hypoxia-induced cell death. Furthermore, NLRP3 and ASC-deficient mice were protected against oxidative stress-induced diabetes caused by repetitive low-dose alloxan administration, and this was associated with reduced β-cell death and reduced macrophage infiltration. This suggests that the beneficial effect of NLRP3 inflammasome deficiency on oxidative stress-mediated β-cell damage could involve reduced macrophage infiltration and activation. To support the role of macrophage activation in alloxan-induced diabetes, we injected WT mice with liposomal clodronate, which causes macrophage depletion before induction of a diabetic phenotype by alloxan treatment, resulting in improved glucose homeostasis in WT mice. We show here that the NLRP3 inflammasome acts as a mediator of hypoxia and oxidative stress in insulin-producing cells, suggesting that inhibition of the NLRP3 inflammasome could have beneficial effects on β-cell preservation.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00461.2017DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
20
oxidative stress-induced
8
oxidative stress
8
mice nlrp3
8
reduced macrophage
8
macrophage infiltration
8
nlrp3
7
mice
6
oxidative
5
inflammasome mediates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!