The development of multilayered interfacial engineering on the emulsion freeze-thaw properties has recently attracted widespread attention, because of the essential freeze-thaw storage process in some emulsion-matrix food products. In this research, we studied the role of salt concentration on the freeze-thaw properties of quinoa protein (QPI) nanoparticles-stabilized Pickering emulsions. The QPI nanoparticles (particle concentration c = 2%, w/v) with increasing particle size and surface hydrophobicity ( H) were fabricated by ultrasound treatment at 100 W for 20 min, by varying the NaCl addition (salt concentrations, 0-500 mM). The sonicated QPI nanoparticles with increasing salt concentrations showed higher β-sheet structure contents and stronger hydrophobic interactions, which were attributed to the decreasing charged groups and particle aggregation by electrostatic interactions. As compared to the sonicated QPI nanoparticles-stabilized Pickering emulsions ( c = 2%, oil fraction φ = 0.5) without salt accretion, the emulsions with salt accretion exhibited better freeze-thaw properties after three freeze-thaw circulations, which might be mainly caused by the generation of gel-like three-dimensional structure and multilayered network at the droplets' interface with smaller droplet sizes. Increasing the salt concentration progressively enhanced the freeze-thaw properties of sonicated QPI nanoparticles-stabilized Pickering emulsions probably due to the inhibit formation of ice crystal by the "salting-out" effects. The results of this study would provide great significance to investigate the role of salt concentration in the freeze-thaw properties of protein-stabilized Pickering emulsions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.8b02407 | DOI Listing |
Food Chem X
January 2025
School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
Herein, leaf polysaccharides (ANPs) were isolated, identified, and used as a particle emulsifier to stabilize Pickering emulsions. ANP was identified as a polysaccharide with a weight-average molecular weight of 383.10 ± 8.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
Introduction of non-DLVO forces by nonionic surfactants brings about fascinating changes in the phase behavior of silica nanosuspensions. We show here that alterations in the interaction and wetting properties of negatively charged silica nanoparticles (Ludox® LS) in the presence of polyethylene oxide-polypropylene oxide-polyethylene oxide-based triblock copolymers called Pluronics lead to the formation of stable o/w Pickering emulsions and interparticle attraction-induced thermoresponsive liquid-liquid phase separations. The results make interesting comparisons with those reported for Ludox® TM nanosuspensions comprising larger silica nanoparticles.
View Article and Find Full Text PDFJ Control Release
January 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. Electronic address:
Most subunit antigens often induce suboptimal vaccination efficacy, possibly due to their low immunogenicity and limited ability to migrate to lymph nodes (LNs). Although the emergence of nanovaccine has significantly addressed these challenges, most formulations still require specific biological or chemical modifications to the carrier or antigen for efficient antigen loading. In this study, we report a Pickering emulsion-based nanovaccine that directly utilized antigens and adjuvants as stabilizers, effectively amplifying immune responses without additional physicochemical alterations.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China. Electronic address:
Nobiletin (NOB), a lipid-soluble polymethoxyflavone with potent antioxidant, antimicrobial, and anti-inflammatory properties, suffers from poor stability and pH sensitivity, limiting its bioavailability. In this study, Pickering high internal phase emulsions (HIPEs) stabilized by soy protein isolate (SPI) and κ-carrageenan (KC) were developed to encapsulate and protect NOB. The emulsions, containing a 75 % medium-chain triglyceride (MCT) volume fraction, were optimized by investigating the effects of pH and KC concentration on the key properties such as the creaming index, particle size, zeta potential, microstructure, and rheology.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China.
Research on stimuli-responsive micro-nanocontainers has gained attention for targeted corrosion inhibition and controlled emulsification-demulsification in oil recovery. However, existing nanocontainers face issues like irreversible drug release and limited functionality. This study presents a multi-functional nanocontainer design with reversible drug release and emulsification-demulsification capabilities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!