Conductive polymers are of great importance in a variety of chemistry-related disciplines and applications. The recently developed bottom-up on-surface synthesis strategy provides us with opportunities for the fabrication of various nanostructures in a flexible and facile manner, which could be investigated by high-resolution microscopic techniques in real space. Herein, we designed and synthesized molecular precursors functionalized with benzal  gem-dibromomethyl groups. A combination of scanning tunneling microscopy, noncontact atomic force microscopy, high-resolution synchrotron radiation photoemission spectroscopy, and density functional theory calculations demonstrated that it is feasible to achieve the direct formation of C-C double-bonded structural motifs via on-surface dehalogenative homocoupling reactions on the Au(111) surface. Correspondingly, we convert the sp-hybridized state to an sp-hybridized state of carbon atoms, i. e., from an alkyl group to an alkenyl one. Moreover, by such a bottom-up strategy, we have successfully fabricated poly(phenylenevinylene) chains on the surface, which is anticipated to inspire further studies toward understanding the nature of conductive polymers at the atomic scale.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.8b02459DOI Listing

Publication Analysis

Top Keywords

direct formation
8
formation c-c
8
c-c double-bonded
8
double-bonded structural
8
structural motifs
8
motifs on-surface
8
on-surface dehalogenative
8
dehalogenative homocoupling
8
conductive polymers
8
sp-hybridized state
8

Similar Publications

Azo dye wastewater has garnered significant attention from researchers because of its association with high-temperature, high-salt, and high-alkali conditions. In this study, consortium ZZ efficiently decolorized brown D3G under halophilic and thermophilic conditions. he results indicated that consortium ZZ, which was mainly dominated by Marinobacter, Bacillus, and Halomonas, was achieved decolorization rates ranging from 1 to 10% at temperatures between 40 °C and 50 °C, while maintaining a pH range of 7 to 10 for direct brown D3G degradation.

View Article and Find Full Text PDF

The purpose of this study was to explore the inhibitory effect of andrographolide on the expression of key regulatory genes involved in the biofilm formation of Staphylococcus epidermidis (SE). Taking the film-producing strain Staphylococcus epidermidis SE1457 as the research object, the effect of andrographolide on the formation of Staphylococcus epidermidis biofilms was analyzed via crystal violet staining, and biofilm models of SE adhesion, aggregation and maturity were established in vitro. RT‒PCR was used to detect the effects of the expression of icaA-, atlE-, aap- and luxS-related genes of andrographolide on biofilm formation in SE.

View Article and Find Full Text PDF

A major challenge in the stem cell biology field is the ability to produce fully functional cells from induced pluripotent stem cells (iPSCs) that are a valuable resource for cell therapy, drug screening, and disease modelling. Here, we developed a novel inducible CRISPR-mediated activation strategy (iCRISPRa) to drive the expression of multiple endogenous transcription factors (TFs) important for in vitro cell fate and differentiation of iPSCs to haematopoietic progenitor cells. This work has identified a key role for IGFBP2 in developing haematopoietic progenitors.

View Article and Find Full Text PDF

Chalcogen Bonding Catalysis Enables Ring-Opening of Cyclopropene and Ring Expansion of Aryl Ketones.

Angew Chem Int Ed Engl

December 2024

Shandong University, Chemistry and Chemical Engineering, Shanda South Road 27, 250100, Jinan, CHINA.

Catalytic transformation of carbene species constitutes a fundamental part in organic synthesis, and the research in this direction has been dominated by transition metals while organic catalysts are difficult to mimic such transition-metal-like reactivity. It would significantly advance carbene chemistry if organic catalysts enable achieving classical metal-carbene approaches otherwise unrealizable reactions. Herein, we report that chalcogen bonding catalysis can solve reactivity problem to achieve an elusive Buchner ring expansion of aryl ketones appending a cyclopropene moiety as carbene precursor.

View Article and Find Full Text PDF

The development of robust, efficient, and cost-effective heterogeneous photocatalysts for visible light-driven CO2 reduction continues to be a significant challenge in the quest for sustainable energy solutions. As a result, increasing attention is being directed towards the exploration of high-performance photocatalysts capable of converting CO2 into chemical feedstocks. Imidazolate Frameworks Potsdam (IFPs) can be a promising candidate for CO2 photoreduction due to their ease of synthesis, use of low-cost, earth-abundant metals, and high chemical and thermal stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!