Moxidectin (MOX), a broad‑spectrum antiparasitic agent, belongs to the milbemycin family and is similar to avermectins in terms of its chemical structure. Previous research has revealed that milbemycins, including MOX, may potentially function as effective multidrug resistance agents. In the present study, the impact of MOX on the viability of glioma cells was examined by MTT and colony formation assay, and the molecular mechanisms underlying MOX‑mediated glioma cell apoptosis were explored by using flow cytometry and apoptosis rates. The results demonstrated that MOX exerts an inhibitory effect on glioma cell viability and colony formations in vitro and xenograft growth in vivo and is not active against normal cells. Additionally, as shown by western blot assay, it was demonstrated that MOX arrests the cell cycle at the G0/G1 phase by downregulating the expression levels of cyclin‑dependent kinase (CDK)2, CDK4, CDK6, cyclin D1 and cyclin E. Furthermore, it was revealed that MOX is able to induce cell apoptosis by increasing the Bcl‑2‑associated X protein/B‑cell lymphoma 2 ratio and activating the caspase‑3/‑9 cascade. In conclusion, these results suggest that MOX may inhibit the viability of glioma cells by inducing cell apoptosis and cell cycle arrest, and may be able to function as a potent and promising agent in the treatment of glioma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072399 | PMC |
http://dx.doi.org/10.3892/or.2018.6561 | DOI Listing |
Growth Factors
March 2025
Department of Surgery, The University of Melbourne, Parkville, Australia.
Activated Akt and loss of phosphatase and tensin homolog (PTEN) tumour suppression aid chemo- and radio-resistance in glioblastoma stem cells (GSC), contributing to treatment failure in glioblastoma. In this study, sixteen GSC lines were generated from 66 individual glioma samples, in gliomasphere culture conditions. Thirteen of 16 GSC lines expressed hyperphosphorylated Akt (Ser473); Akt phosphorylation did not correlated with EGFR expression.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Agriculture and Biotechnology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
InfoScan is a novel bioinformatics tool designed for the comprehensive analysis of full-length single-cell RNA sequencing (scRNA-seq) data. It enables the identification of unannotated transcripts and rare cell populations, providing a powerful platform for transcriptome characterization. In this study, InfoScan was applied to glioblastoma multiforme (GBM), identifying a rare "neoplastic-stemness" subpopulation exhibiting cancer stem cell-like features.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands.
Due to the minimal survival benefits of existing therapies for pediatric diffuse midline glioma (DMG) patients, new therapeutic modalities are being investigated. Immunotherapies such as CAR-T cells and oncolytic viruses (OVs) are part of these efforts, as evidenced by the increasing number of clinical trials. αβ T cells engineered with a high-affinity γ9δ2 T-cell receptor (TEGs) are immune cells designed to target metabolic changes in malignant or virally infected cells via BTN2A1 and BTN3A.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea.
Gliomas, particularly glioblastoma (GBM), are among the most challenging brain tumors due to their complex and dynamic tumor microenvironment (TME). The TME plays a pivotal role in tumor progression, immune evasion, and resistance to therapy through intricate interactions among glioma cells, immune components, neurons, astrocytes, the extracellular matrix, and the blood-brain barrier. Targeting the TME has demonstrated potential, with immunotherapies such as checkpoint inhibitors and neoadjuvant therapies enhancing immune responses.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
Department of Synthetic Neurotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia.
Reactive oxygen species (ROS) play a key role in cancer progression and antitumor therapy. Glioblastoma is a highly heterogeneous tumor with different cell populations exhibiting various redox statuses. Elevated ROS levels in cancer cells promote tumor growth and simultaneously make them more sensitive to anticancer drugs, but further elevation leads to cell death and apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!