Effects of shear stress on endotheliaxl differentiation of stem cells from human exfoliated deciduous teeth (SHEDs) were investigated. SHEDs were treated with shear stress, then reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to analyse the mRNA expression of arterial markers and western blot analysis was performed to analyse protein expression of angiogenic markers. Additionally, in vitro matrigel angiogenesis assay was performed to evaluate vascular-like structure formation. The secreted protein expression levels of the vascular endothelial growth factor (VEGF) of SHEDs after shear stress was also quantified using corresponding ELISA kits. Untreated SHEDs seeded on Matrigel cannot form vessel-like structures at any time points, whereas groups treated with shear stress formed a few vessel-like structures at 4, 8 and 12 h. When SHEDs were treated with EphrinB2-siRNA for 24, the capability of vessel-like structure formation was suppressed. After being treated with shear stress, the expression of VEGF, VEGFR2, DLL4, Notch1, EphrinB2, Hey1 and Hey2 (arterial markers) gene expression was significantly upregulated, moreover, the protein levels of VEGFR2, EphrinB2, CD31, Notch1, DLL4, Hey1, and Hey2 were also significantly up-regulated. Both the mRNA and protein expression levels of EphB4 (venous marker) were downregulated. The average VEGF protein concentration in supernatants secreted by shear stress treated SHEDs groups increased significantly. In conclusion, shear stress was able to induce arterial endothelial differentiation of stem cells from human exfoliated deciduous teeth, and VEGF-DLL4/Notch‑EphrinB2 signaling was involved in this process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108868 | PMC |
http://dx.doi.org/10.3892/ijmm.2018.3761 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!