Hypothesis: We tested whether GV1001 has any ototoxic side effects at different doses and whether it protects hearing in an aminoglycoside-induced ototoxicity mouse model.
Background: GV1001, a novel peptide vaccine currently being examined in a Phase 3 clinical trial to treat pancreatic cancer, also has anti-inflammatory and antioxidant effects.
Methods: In the first experiment, C57/BL6 mice were injected with GV1001 preparations at concentrations of 0.1 to 100 mg/kg for 7 days to evaluate the toxicity of GV1001 on the inner ear and kidneys. In the second experiment, the protective effect of GV1001 was tested in an ototoxicity mouse model that was generated by injecting 800 mg/kg kanamycin (KM) for 2 weeks. The hearing threshold and hair cell loss were compared between the KM + GV1001 group (treated with 10 mg/kg GV1001 for 2 wk) and the KM + saline group. The hearing threshold was measured before, and 7, 14, and 21 days after the initial treatment. The blood urea nitrogen level was measured.
Results: No ototoxicity or renal toxicity was found following treatment with different doses of GV1001 (0.1-100 mg/kg). The KM + saline group showed impaired auditory function and markedly disoriented and missing cochlear hair cells, while the KM + GV1001 group showed significant hearing and hair cell preservation in comparison (p < 0.05).
Conclusion: GV1001 itself did not have any detrimental effects on the inner ear or kidney. In the KM induced ototoxicity model, concomitant administration of GV1001 protected against cochlear hair cell damage and preserve hearing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MAO.0000000000001911 | DOI Listing |
Neurochem Int
January 2025
School of Public Health, Hangzhou Normal University, Hangzhou, 311121, P. R. China. Electronic address:
Hair cell (HC) loss, frequently induced by ototoxic agents such as gentamicin, leads to irreversible hearing loss. Because of the restricted regenerative capabilities of the mammalian inner ear, the exploration of therapeutic strategies to restore damaged HCs is critically needed. Recombinant human Neuritin (rhNeuritin), a neurotrophic factor with established roles in promoting cell survival and regeneration across various systems, presents itself as a promising therapeutic candidate for HC repair.
View Article and Find Full Text PDFVertigo is a common symptom of various diseases that affects a large number of people worldwide. Current leading treatments for intractable peripheral vertigo are to intratympanically inject ototoxic drugs such as gentamicin to attenuate the semicircular canal function but inevitably cause hearing injury. Photodynamic therapy (PDT) is a noninvasive therapeutic approach by precisely targeting the diseased tissue.
View Article and Find Full Text PDFJ Otol
July 2024
Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China.
Objectives: Deletion of gene in mice has been linked to progressive hearing loss and degeneration of cochlear cells. Cisplatin, an antitumor drug, can cause various side effects, including ototoxicity. The aim of this study was to investigate the effects of on cisplatin-induced hearing impairment in mice and to explore the possible mechanism.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea. Electronic address:
mPTP is a multi-protein complex that opens in mitochondria during cell death. Cisplatin-induced hearing loss is also known to be caused by mPTP opening. Thus, our study evaluated the protective effect of a novel mPTP inhibitor named DBP-iPT against cisplatin-induced hearing loss.
View Article and Find Full Text PDFToxicol Lett
January 2025
Department of Otolaryngology, Hangzhou First People's Hospital, School of Medicine, Affiliated to Westlake University, Hangzhou, Zhejiang, China; The Fourth school of Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China. Electronic address:
The present study was designed to investigate the role and mechanism of the Apoptosis repressor with caspase recruitment domain (ARC) in protecting the neomycin-induced hair cell damage. HEI-OC1 cells and basilar membrane culture were applied to determine the effect of ARC. Plasmid transfection was used to regulate the ARC or Ras expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!