HIV-1-infected smokers are at risk of oxidative damage to neuronal cells in the central nervous system by both HIV-1 and cigarette smoke. Since neurons have a weak antioxidant defense system, they mostly depend on glial cells, particularly astrocytes, for protection against oxidative damage and neurotoxicity. Astrocytes augment the neuronal antioxidant system by supplying cysteine-containing products for glutathione synthesis, antioxidant enzymes such as SOD and catalase, glucose for antioxidant regeneration via the pentose-phosphate pathway, and by recycling of ascorbic acid. Areas covered: The transport of antioxidants and energy substrates from astrocytes to neurons could possibly occur via extracellular nanovesicles called exosomes. This review highlights the neuroprotective potential of exosomes derived from astrocytes against smoking-induced oxidative stress, HIV-1 replication, and subsequent neurotoxicity observed in HIV-1-positive smokers. Expert opinion: During stress conditions, the antioxidants released from astrocytes either via extracellular fluid or exosomes to neurons may not be sufficient to provide neuroprotection. Therefore, we put forward a novel strategy to combat oxidative stress in the central nervous system, using synthetically developed exosomes loaded with antioxidants such as glutathione and the anti-aging protein Klotho.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14728222.2018.1501473 | DOI Listing |
Int J Surg
January 2025
Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.
Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).
Int J Surg
January 2025
Department of Anesthesiology, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, Nanchang, Jiangxi Province, China.
Nerve growth factor (NGF) is critical in regulating the homeostasis of microglial cells. It activates various signaling pathways that mediate the phosphorylation of cAMP response element-binding protein (CREB) at key regulatory sites. The decrease in phosphorylated CREB (p-CREB) expression is linked to neuroinflammatory responses.
View Article and Find Full Text PDFPharmacol Rep
January 2025
Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran.
Background: Epilepsy, a neurological disorder characterized by recurrent seizures, presents considerable difficulties in treatment, particularly when dealing with drug-resistant cases. Dapsone, recognized for its anti-inflammatory properties, holds promise as a potential therapeutic option. However, its effectiveness in epilepsy requires further investigation.
View Article and Find Full Text PDFNeurotox Res
January 2025
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Resveratrol, a natural polyphenol, has shown promising neuroprotective effects in several in vivo and in vitro experimental models. However, the mechanisms by which resveratrol mediates these effects are not fully understood. Glutamate is the major excitatory neurotransmitter in the brain; however, excessive extracellular glutamate levels can affect neural activity in several neurological diseases.
View Article and Find Full Text PDFArch Toxicol
January 2025
Applied Biology Department, Miguel Hernández de Elche University, Elche, Spain.
Chlorpyrifos (CPF) is an organophosphorus pesticide of concern because many in vivo animal studies have demonstrated developmental toxicity exerted by this substance; however, despite its widespread use, evidence from epidemiological studies is still limited. In this study, we have collected all the information generated in the twenty-first century on the developmental toxicity of CPF using new approach methodologies. We have critically evaluated and integrated information coming from 70 papers considering human, rodent, avian and fish models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!