Small-cell prostate carcinoma (SCPC) is an aggressive malignancy that is managed similarly to small-cell lung cancer. SCPC can evolve from prostate adenocarcinoma in response to androgen deprivation therapy, but, in rare cases, is present at initial cancer diagnosis. The molecular aetiology of de novo SCPC is incompletely understood, owing to the scarcity of tumour tissue and the short life-expectancy of patients. Through a retrospective search of our regional oncology pharmacy database, we identified 18 patients diagnosed with de novo SCPC between 2004 and 2017. Ten patients had pure SCPC pathology, and the remainder had some admixed adenocarcinoma foci, but all were treated with first-line platinum-based chemotherapy. The median overall survival was 28 months. We performed targeted DNA sequencing, whole exome sequencing and mRNA profiling on formalin-fixed paraffin-embedded archival tumour tissue. We observed frequent biallelic deletion and/or mutation of the tumour suppressor genes TP53, RB1, and PTEN, similarly to what was found in treatment-related SCPC. Indeed, at the RNA level, pure de novo SCPC closely resembled treatment-related SCPC. However, five patients had biallelic loss of DNA repair genes, including BRCA1, BRCA2, ATM, and MSH2/6, potentially underlying the high genomic instability of this rare disease variant. Two patients with pure de novo SCPC harboured ETS gene rearrangements involving androgen-driven promoters, consistent with the evolution of de novo SCPC from an androgen-driven ancestor. Overall, our results reveal a highly aggressive molecular landscape that underlies this unusual pathological variant, and suggest opportunities for targeted therapy strategies in a disease with few treatment options. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Download full-text PDF

Source
http://dx.doi.org/10.1002/path.5137DOI Listing

Publication Analysis

Top Keywords

novo scpc
20
scpc
10
tumour suppressor
8
loss dna
8
dna repair
8
small-cell prostate
8
prostate carcinoma
8
tumour tissue
8
patients pure
8
treatment-related scpc
8

Similar Publications

In prostate cancer, neuroendocrine (NE) differentiation may rarely present de novo or more frequently arises following hormonal therapy in patients with castration-resistant prostate cancer (CRPC). Its distinct phenotype is characterized by an aggressive clinical course, lack of responsiveness to hormonal therapies and poor prognosis. Importantly, a subset of CRPC patients exhibits an aggressive-variant disease with very similar clinical and molecular characteristics to small-cell prostate cancer (SCPC) even though tumors do not have NE differentiation.

View Article and Find Full Text PDF

Androgen Receptor Signaling in the Development of Castration-Resistant Prostate Cancer.

Front Oncol

September 2019

Departments of Surgery and Urology, Immunobiology & Transplant Science Center, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States.

Most prostate cancers are androgen-sensitive malignancies whose growths depend on the transcriptional activity of the androgen receptor (AR). In the 1940s, Charles Huggins demonstrated that the surgical removal of testes in men can result in a dramatic improvement in symptoms and can induce prostate cancer regression. Since then, androgen deprivation therapies have been the standard first-line treatment for advanced prostate cancer, including: surgical castration, medical castration, antiandrogens, and androgen biosynthesis inhibitors.

View Article and Find Full Text PDF

Small-cell prostate carcinoma (SCPC) is an aggressive malignancy that is managed similarly to small-cell lung cancer. SCPC can evolve from prostate adenocarcinoma in response to androgen deprivation therapy, but, in rare cases, is present at initial cancer diagnosis. The molecular aetiology of de novo SCPC is incompletely understood, owing to the scarcity of tumour tissue and the short life-expectancy of patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!