The discovery of drugs relevant to transforming growth factor β (TGF-β) receptor inhibitors have been considered as a considerable challenge during therapy idiopathic pulmonary fibrosis diseases. For the first time, herein we illustrate a field-based quantitative structure-activity relationship (QSAR) model and molecular dynamics (MD) simulations for novel 7-substituted-pyrazolo [4, 3-b] pyridine derivatives with biological activity for the TGF-β receptor, with an attempt of elucidating the 3D structural features that are essential for the activity. Results demonstrate that the field-based model (Q = 0.548, R = 0.840, R = 0.750) are acceptable with good predictive capabilities. In addition, MD studies were also carried out on the training set with the aim of exploring their binding modes in the active pocket of TGF-β receptor, resulting in some of the crucial structural fragments which are responsible for inhibitory activity. Therefore, we summarized the following features required for TGF-β receptor inhibition: electronegative in region1, bulky groups in region2 and smaller groups in region3. Based on the model and related information, we hope the above information provides an important insight for understanding the interactions of the inhibitors and TGF-β receptor, which may be useful in discovering novel potent inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiolchem.2018.07.002 | DOI Listing |
ACS Nano
January 2025
Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States.
The recent development of modular universal chimeric antigen receptor (CAR) T-cell platforms that use bifunctional adaptor intermediates to redirect engineered T-cell effector function has greatly expanded the capabilities of adoptive T-cell therapy, enabling safer and more comprehensive cancer treatment. However, universal CAR receptor systems rely on unstable transient recognition of tag-coupled intermediates for T-cell activation, and the array of targeting intermediates has been limited to antibodies and small molecules. Addressing these shortcomings, we engineered universal CAR T-cell receptors that can be covalently modified with synthetic biomaterials by accelerated SpyCatcher003-SpyTag003 chemistry for cancer-cell targeting.
View Article and Find Full Text PDFBlood
January 2025
Medical University of Vienna, Vienna, Austria.
In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.
View Article and Find Full Text PDFJ Clin Oncol
January 2025
Children's Hospital of Philadelphia/University of Pennsylvania, Philadelphia, PA.
Larotrectinib is a highly selective tropomyosin receptor kinase (TRK) inhibitor with efficacy in children with TRK fusion tumors. We evaluated patient outcomes after elective discontinuation of larotrectinib in the absence of disease progression in a protocol-defined wait-and-see subset analysis of eligible patients where treatment resumption with larotrectinib was allowed if disease progressed. We also assessed the safety and efficacy of larotrectinib in all pediatric patients with sarcoma.
View Article and Find Full Text PDFBlood
January 2025
University of Chicago, Chicago, Illinois, United States.
Most diffuse large B-cell lymphoma (DLBCL) patients treated with immunotherapies such as bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was applied to multiple large independent datasets in order to characterize DLBCL immune environments, and to define their association with tumor cell-intrinsic genomic alterations and outcomes to CD19-directed CAR T-cell and CD20 x CD3 BsAb therapies. This approach effectively segregated DLBCLs into four immune quadrants (IQ) defined by cell-of-origin and immune-related gene set expression scores.
View Article and Find Full Text PDFT-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited treatment options. To discover new treatment targets for T-PLL, we performed high-throughput drug sensitivity screening on 30 primary patient samples ex-vivo. After screening over 2'800 unique compounds, we found T-PLL to be more resistant to most drug classes, including chemotherapeutics, compared to other blood cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!