Solvent permeation across membranes is limited due to physical resistance to diffusion from the selective layer within the membrane and to plasticizing effects generated by the solvent molecules onto the polymeric macromolecular matrix. Nano-composite thin film membranes provide promising routes to generate controlled microstructural separation materials with higher selectivities and permeabilities. Here, the fabrication of nano-composite based on octamethyl-polyhedral oligomeric silsesquioxane - hexamethyldisiloxane thin film membranes is demonstrated by aerosol assisted atmospheric plasma deposition onto pre-formed nano-porous membrane supports for the first time. Stable, atomically smooth and continuous solid films with controllable thickness down to 50 nm were achieved. The deposition process allowed for the control of the wettability of the surfaces to water and organic solvents, leading to the generation of hydrophobic but alcohol-philic surfaces. The liquid entry pressure of the films to water was found to be 8 bar from plasma polymerization as oppose to 3 bar for the bare nano-porous support only. In addition, the ideal separation selectivity for ethanol to water, up to 6.5, highlight the impact of both the surface energy and level of cross-linking of the hexamethyldisiloxane nanostructures on the diffusion mechanisms. This new atmospheric plasma deposition strategy opens-up cost-effective and environmentally friendly routes for the design of the smart Janus membrane with customizable properties and performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.06.343 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!