Breast cancer is the most malignant type of cancer in women and is a global health problem, with mortality by metastasis being the main factor among others. Currently, detection and diagnosis of breast cancer is achieved through a variety of procedures, such as clinical examination, medical imaging, biopsy, and histopathological analysis. In contrast, spectroscopic analysis has a variety of advantages such as being noninvasive, not destroying biological materials, and not requiring additional histological analysis. In this study, various approaches using Raman spectroscopy, atomic force microscopy (AFM), and optical microscopy were used together to differentiate between and characterize normal breast cell lines (MCF-10A) and breast cancer cell lines (MDA-MB-231, MDA-MB-453). Raman spectra of normal breast cell and breast cancer cell lines confirmed visual differences in the concentrations of various compounds. These spectra were also analyzed using principle component analysis (PCA), and the PCA results showed reliable separation of the three cell lines and the cancer cell lines (MDA-MB-231, MDA-MB-453). With these results, optically synchronizing the AFM morphology, the Raman spectroscopy, and the visible RGB optical transmission intensity provided contrasts for not only conformational differences but also intracellular variation between the normal and cancer cell lines. We observed the inherent characteristic that there is no local difference in cancer cells regardless of morphology in a wide range of optical properties such as absorption, scattering and inelastic scattering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2018.07.024 | DOI Listing |
J Exp Clin Cancer Res
January 2025
Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a second-line treatment with curative potential for leukemia patients. However, the prognosis of allo-HSCT patients with disease relapse or graft-versus-host disease (GvHD) is poor. CD4 or CD8 conventional T (Tconv) cells are critically involved in mediating anti-leukemic immune responses to prevent relapse and detrimental GvHD.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
Background: Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC), faces resistance issues, partly due to myeloid-derived suppressor cells (MDSCs) that enhance immunosuppression in the tumor microenvironment (TME).
Methods: Various murine HCC cell lines and MDSCs were used in a series of in vitro and in vivo experiments. These included subcutaneous tumor models, cell viability assays, flow cytometry, immunohistochemistry, and RNA sequencing.
BMC Cancer
January 2025
Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Background: Neuroblastoma, a prevalent extracranial solid tumor in pediatric patients, demonstrates significant clinical heterogeneity, ranging from spontaneous regression to aggressive metastatic disease. Despite advances in treatment, high-risk neuroblastoma remains associated with poor survival. SLC1A5, a key glutamine transporter, plays a dual role in promoting tumor growth and immune modulation.
View Article and Find Full Text PDFBMC Cancer
January 2025
First Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.
Pancreatic adenocarcinoma (PAAD) is a highly malignant tumor in the digestive system, with an increasing incidence and mortality rate globally. Recent genetic studies have revealed that the abnormal expression and functional dysregulation of various genes are involved in the occurrence and progression of pancreatic cancer. NIPA-like proteins (NIPAs) are expressed in a variety of cancer types, yet the role of NIPAL1 in cancer remains unclear.
View Article and Find Full Text PDFBMC Mol Cell Biol
January 2025
Institute of Future Biophysics, Institutskiy per. 9, Dolgoprudny, Moscow Oblast, Moscow, Russia.
This paper describes a method for determining the cytotoxicity of chemical compounds based on the detection of fluorescent proteins-in this case, green fluorescent protein (GFP) and red fluorescent protein (RFP), which are released into the medium from dead cells. This method is similar in principle to the lactate dehydrogenase test (LDH test), but it does not require a reaction with a chromogenic substrate. This method also makes it possible to independently determine the viability of different lines when used in cocultures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!