In the present study, we examined the subcellular distribution of metals and metalloids (As, Cd, Cu, Se and Zn) in the liver and gonads of wild white suckers (Catostomus commersonii) collected downstream from a metal mining operation (exposure area) and in a reference area. Metal partitioning among potentially metal-sensitive fractions (heat-denatured proteins (HDP), mitochondria and microsomes) and potentially biologically detoxified fractions (heat-stable proteins (HSP) and metal-rich granules) within cells was determined after differential centrifugation, NaOH digestion and heat-denaturation steps. Metal-handling strategies between liver and gonads, and between sexes, were examined. Hepatic metal concentrations were significantly higher in exposed compared to reference fish, especially for Se (14x), Cd (5x) and Cu (3x), and did not vary between sexes. In contrast, gonadal Cd, Cu, Se and Zn concentrations were consistently lower in testes than in ovaries; marked differences in Cd and Se concentrations between exposed and reference fish were observed for both sexes. Overall, metal-handling strategies were similar in both liver (male and female pooled) and female gonads, but differed from those in male gonads, likely due to the different functions assigned to ovaries and testes. Subcellular partitioning of As, Cd and Cu showed that the HSP fraction was most responsive to increased metal exposure, presumably reflecting Cu regulation, and possibly Cd and As detoxification. Zinc concentrations were tightly controlled and mainly found in the HDP fraction. Interestingly, changes in Cd-handling strategy in female gonads were particularly evident, with Cd shifting dramatically from the metal-sensitive HDP fraction in reference fish to the metal-detoxified HSP fraction in exposed fish. It seems that Cd detoxification in female gonads was not fully induced in the less contaminated fish, but became more effective above a threshold Cd concentration of 0.05 nmol/g dry weight. Partitioning of Se was different, with the largest contributor to the total liver and gonad Se burdens being the putative metal-sensitive HDP fraction, suggesting that excess Se in this fraction in exposed fish may lead to Se-related stress. The present subcellular partitioning results demonstrate that metal handling strategies vary among metals, between organs and (in some cases) as a function of metal exposure. They also show promise in identifying metals of potential concern in a risk assessment context.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2018.07.001DOI Listing

Publication Analysis

Top Keywords

subcellular partitioning
12
liver gonads
12
reference fish
12
female gonads
12
hdp fraction
12
metals metalloids
8
metalloids liver
8
gonads wild
8
wild white
8
white suckers
8

Similar Publications

Biogenesis of membrane-bound organelles involves the synthesis, remodeling, and degradation of their constituent phospholipids. How these pathways regulate organelle size remains poorly understood. Here we demonstrate that a lipid-degradation pathway inhibits expansion of the endoplasmic reticulum (ER) membrane.

View Article and Find Full Text PDF

Living cells use liquid-liquid phase separation (LLPS) to compartmentalize metabolic functions into mesoscopic-sized droplets. Deciphering the mechanisms at play in LLPS is therefore critical to understanding the structuration and functions of cells at the subcellular level. Although observed and achieved to a significant degree of control in vivo, the reconstitution of LLPS integrating advanced biological functions, such as gene expression, has been so far limited in vitro.

View Article and Find Full Text PDF

Sugars, produced through photosynthesis, are at the core of all organic compounds synthesized and used for plant growth and their response to environmental changes. Their production, transport, and utilization are highly regulated and integrated throughout the plant life cycle. The maintenance of sugar partitioning between the different subcellular compartments and between cells is important in adjusting the photosynthesis performance and response to abiotic constraints.

View Article and Find Full Text PDF

Gestational Diabetes-like Fuels Impair Mitochondrial Function and Long-Chain Fatty Acid Uptake in Human Trophoblasts.

Int J Mol Sci

October 2024

Department of Pediatrics, Division of Neonatology, Sanford School of Medicine, University of South Dakota, 1400 W. 22nd St., Sioux Falls, SD 57105, USA.

In the parent, gestational diabetes mellitus (GDM) causes both hyperglycemia and hyperlipidemia. Despite excess lipid availability, infants exposed to GDM are at risk for essential long-chain polyunsaturated fatty acid (LCPUFA) deficiency. Isotope studies have confirmed less LCPUFA transfer from the parent to the fetus, but how diabetic fuels impact placental fatty acid (FA) uptake and lipid droplet partitioning is not well-understood.

View Article and Find Full Text PDF

Microglia continually surveil the brain allowing for rapid detection of tissue damage or infection. Microglial metabolism is linked to tissue homeostasis, yet how mitochondria are subcellularly partitioned in microglia and dynamically reorganize during surveillance, injury responses, and phagocytic engulfment in the intact brain are not known. Here, we performed intravital imaging of microglia mitochondria, revealing that microglial processes diverge, with some containing multiple mitochondria while others are completely void.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!