Engineered neural implants have a myriad of potential basic science and clinical neural repair applications. Although there are implants that are currently undergoing their first clinical investigations, optimizing their long-term viability and efficacy remain an open challenge. Functional implants with pre-vascularization of various engineered tissues have proven to enhance post-implantation host integration, and well-known synergistic neural-vascular interplays suggest that this strategy could also be promising for neural tissue engineering. Here, we report the development of a novel bio-engineered neuro-vascular co-culture construct, and demonstrate that it exhibits enhanced neurotrophic factor expression, and more complex neuronal morphology. Crucially, by introducing genetically encoded calcium indicators (GECIs) into the co-culture, we are able to monitor functional activity of the neural network, and demonstrate greater activity levels and complexity as a result of the introduction of endothelial cells in the construct. The presence of this enhanced activity could putatively lead to superior integration outcomes. Indeed, leveraging on the ability to monitor the construct's development post-implantation with GECIs, we observe improved integration phenotypes in the spinal cord of mice relative to non-vascularized controls. Our approach provides a new experimental system with functional neural feedback for studying the interplay between vascular and neural development while advancing the optimization of neural implants towards potential clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2018.07.001 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
Cognition relies on transforming sensory inputs into a generalizable understanding of the world. Mirror neurons have been proposed to underlie this process, mapping visual representations of others' actions and sensations onto neurons that mediate our own, providing a conduit for understanding. However, this theory has limitations.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China.
Recent advancements in tissue engineering have promoted the development of nerve guidance conduits (NGCs) that significantly enhance peripheral nerve injury treatment, improving outcomes and recovery rates. However, utilising tailored biomimetic three-dimensional (3D) topological porous structures combined with multiple bio-effect neurotrophic factors to create environments similar to neural tissues, regulate local immune responses, and develop a supportive microenvironment to promote peripheral nerve regeneration and repair poses significant challenges. Herein, a biomimetic extracellular matrix (ECM) NGC featuring an interconnected 3D porous network and sustained delivery of insulin-like growth factor-1 (IGF-1) is designed using multi-functional gelatine microcapsules (GMs).
View Article and Find Full Text PDFCurr Protoc
January 2025
Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland.
In vivo calcium imaging in freely moving rats using miniscopes provides valuable information about the neural mechanisms of behavior in real time. A gradient index (GRIN) lens can be implanted in deep brain structures to relay activity from single neurons. While such procedures have been successful in mice, few reports provide detailed procedures for successful surgery and long-term imaging in rats, which are better suited for studying complex human behaviors.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
East China Normal University, Dept. of Chemistry, Dongchuan Road 500, 200062, Shanghai, CHINA.
Monitoring dynamic neurochemical signals in the brain of free-moving animals remains great challenging in biocompatibility and direct implantation capability of current electrodes. Here we created a self-supporting polymer-based flexible microelectrode (rGPF) with sufficient bending stiffness for direct brain implantation without extra devices, but demonstrating low Young's modulus with remarkable biocompatibility and minimal position shifts. Meanwhile, screening by density functional theory (DFT) calculation, we designed and synthesized specific ligands targeting Mg2+ and Ca2+, and constructed Mg-E and Ca-E sensors with high selectivity, good reversibility, and fast response time, successfully monitoring Mg2+ and Ca2+ in vivo up to 90 days.
View Article and Find Full Text PDFJ Neurosci
January 2025
Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Germany
Recordings from Parkinson's disease (PD) patients typically show strong beta-band oscillations (13-35Hz), which can be modulated by deep brain stimulation (DBS). While high-frequency DBS (>100Hz) ameliorates motor symptoms and reduces beta activity in basal ganglia and motor cortex, the effects of low-frequency DBS (<30Hz) are less clear. Clarifying these effects is relevant for the debate about the role of beta oscillations in motor slowing, which might be causal or epiphenomenal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!