The association between iron overload and osteoporosis has been found in many diseases, such as hemochromatosis, β-thalassemia and sickle cell anemia with multiple blood transfusion. One of the contributing factors is iron toxicity to osteoblasts. Some studies showed the negative effects of iron on osteoblasts; however, the effects of two biological available iron species, i.e., ferric and ferrous, on osteoblasts are elusive. Since most intracellular ionized iron is ferric, osteoblasts was hypothesized to be more responsive to ferric iron. Herein, ferric ammonium citrate (FAC) and ferrous ammonium sulfate (FAS) were used as ferric and ferrous donors. Our results showed that both iron species suppressed cell survival and proliferation. Both also induced osteoblast cell death consistent with the higher levels of cleaved caspase 3 and caspase 7 in osteoblasts, indicating that iron induced osteoblast apoptosis. Iron treatments led to the elevated intracellular iron in osteoblasts as determined by atomic absorption spectrophotometry, thereby leading to a decreased expression of genes for cellular iron import and increased expression of genes for cellular iron export. Effects of FAC and FAS on osteoblast differentiation were determined by the activity of alkaline phosphatase (ALP). The lower ALP activity from osteoblast with iron exposure was found. In addition, ferric and ferrous differentially induced osteoblastic and osteoblast-derived osteoclastogenic gene expression alterations in osteoblast. Even though both iron species had similar effects on osteoblast cell survival and differentiation, the overall effects were markedly stronger in FAC-treated groups, suggesting that osteoblasts were more sensitive to ferric than ferrous.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10534-018-0130-6 | DOI Listing |
Foods
December 2024
Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
The current trend in food innovations includes developing products containing plant ingredients or extracts rich in bioactive compounds. This study aimed to prepare and characterize skimmed thermally treated goat's milk powders enriched with lyophilized fruit extracts of Murray (GMLR) and L. (GMLB).
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Science of Physics, Chemistry and Engineering of Faculty of Science and Technology and Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9500-321 Ponta Delgada, Portugal.
tea has received considerable attention due to its beneficial effects on health, particularly due to its antioxidant properties that are affected by several factors, which have a high influence on the final quality of black tea. The objective of this study was to investigate the biological properties of Azorean black tea from five different zones of tea plantation in order to select specific areas to cultivate tea rich in targeted compounds beneficial to human health. The free radical scavenging activity (FRSA), ferric reducing antioxidant power (FRAP), ferrous ion chelating (FIC) activities, total phenolic content (TPC), total flavonoid content (TFC), and tannins were determined by colorimetric methods, and catechin and theaflavin contents were analyzed by high-pressure liquid chromatography.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Nutrition, Second Military Medical University, Shanghai, China.
Tamoxifen is an inhibitor of estrogen receptors and was originally developed for breast cancer therapy. Besides, tamoxifen is widely used for Cre-estrogen receptor-mediated conditional knockout in transgenic mice. However, we found that the 3-month feeding of 0.
View Article and Find Full Text PDFAnal Biochem
January 2025
Department of Studies and Research in Biochemistry, Tumkur University, Tumkur 572103, Karnataka, India. Electronic address:
Current study evaluates the beneficial role of bio-functionalized zinc ferrite nanoparticles fabricated from an aqueous extract of Decalepis hamiltonii leaves (DHLE.ZnFeO NPs) on sodium nitrite (NaNO) and Diclofenac (DFC) induced oxidative stress in RBCs and Sprague Dawley male rat models. DHLE.
View Article and Find Full Text PDFMicroorganisms
November 2024
School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430078, China.
Iron, Earth's most abundant redox-active metal, undergoes both abiotic and microbial redox reactions that regulate the formation, transformation, and dissolution of iron minerals. The electron transfer between ferrous iron (Fe(II)) and ferric iron (Fe(III)) is critical for mineral dynamics, pollutant remediation, and global biogeochemical cycling. Bacteria play a significant role, especially in anaerobic Fe(II) oxidation, contributing to Fe(III) mineral formation in oxygen-depleted environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!