AI Article Synopsis

  • Miniscrews are crucial for orthodontic anchorage, but their failure can stem from design, location, and biocompatibility issues.
  • The study analyzed four commercially available TiAl6V4 miniscrews by examining their surface roughness and elemental composition using advanced techniques like SEM and EDX.
  • Results showed minor variations in surface quality and composition, but all tested miniscrews demonstrated high cell viability and were non-cytotoxic, indicating that biocompatibility is not a factor in their failure.

Article Abstract

Purpose: Miniscrews are an important choice for orthodontic anchorage. Yet reports on failures do exist, and attempts have been made to elucidate the causes. Clinical outcomes may be compromised not only by the mechanical implications of miniscrew design and the location of anchorage but also by poor biocompatibility. Hence, this study deals with the surface roughness and elemental composition of miniscrews and how these properties may affect the in vitro biocompatibility of four commercially available miniscrews.

Methods: Most of the currently available miniscrews are made of TiAl6V4, an alloy widely considered to be biocompatible. The samples tested in this study included four similarly dimensioned TiAl6V4 products from different manufacturers: tomas® by Dentaurum, OrthoEasy® by Forestadent®, Dual Top™ by Jeil Medical/Promedia, and LOMAS by Mondeal®. The surface properties of these products were characterized by scanning electron microscopy (SEM) and energy-dispersive X‑ray spectroscopy (EDX). Cytotoxicity was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and agar overlay assays according to ISO 10993-5.

Results: The miniscrew products were found to show variations in surface-finish quality pertaining to topography and chemical composition, with the latter departing slightly from the manufacturers' specifications. MTT assays yielded rates of cell culture viability in excess of 90%, and agar overlay assays did not reveal decoloration beyond the specimen outlines in any of the experimental groups tested.

Conclusions: The four miniscrew products exhibited some minor, but statistically significant, differences in microtopography, alloy composition, and biological inertness. Cytotoxicity testing revealed that all four products should be considered non-cytotoxic, thus, ruling out poor biocompatibility as a cause of miniscrew failure.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00056-018-0143-3DOI Listing

Publication Analysis

Top Keywords

vitro biocompatibility
8
poor biocompatibility
8
agar overlay
8
overlay assays
8
miniscrew products
8
products
5
biocompatibility orthodontic
4
miniscrews
4
orthodontic miniscrews
4
miniscrews human
4

Similar Publications

The current research was conducted to synthesize Parietaria alsinifolia-mediated iron oxide nanoparticles (P.A@FeONPs) using the green and eco-friendly protocol. The biosynthesized P.

View Article and Find Full Text PDF

Effect of nanoparticulate CaCO on the biological properties of calcium silicate cement.

Sci Rep

January 2025

Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.

This study aimed to evaluate the effects of nanoparticulate CaCO (NPCC) on the biological properties of calcium silicate-based cements (CSCs), including their cytotoxicity, in vitro osteogenic activity, and interactions with rat femur tissue. The average size of NPCC was 90.3±26.

View Article and Find Full Text PDF

Compressible, anti-fatigue, extreme environment adaptable, and biocompatible supramolecular organohydrogel enabled by lignosulfonate triggered noncovalent network.

Nat Commun

January 2025

Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China.

Achieving a synergy of biocompatibility and extreme environmental adaptability with excellent mechanical property remains challenging in the development of synthetic materials. Herein, a "bottom-up" solution-interface-induced self-assembly strategy is adopted to develop a compressible, anti-fatigue, extreme environment adaptable, biocompatible, and recyclable organohydrogel composed of chitosan-lignosulfonate-gelatin by constructing noncovalent bonded conjoined network. The ethylene glycol/water solvent induced lignosulfonate nanoparticles function as bridge in chitosan/gelation network, forming multiple interfacial interactions that can effectively dissipate energy.

View Article and Find Full Text PDF

Silicon integrated circuits (ICs) are central to the next-generation miniature active neural implants, whether packaged in soft polymers for flexible bioelectronics or implanted as bare die for neural probes. These emerging applications bring the IC closer to the corrosive body environment, raising reliability concerns, particularly for chronic use. Here, we evaluate the inherent hermeticity of bare die ICs, and examine the potential of polydimethylsiloxane (PDMS), a moisture-permeable elastomer, as a standalone encapsulation material.

View Article and Find Full Text PDF

PEGylated Platinum Nanoparticles: A Comprehensive Study of Their Analgesic and Anti-Inflammatory Effects.

ACS Appl Bio Mater

January 2025

Department of Physics and Electronics, Christ University, Bengaluru, Karnataka, India 560029.

Pain and inflammation are common symptoms of a majority of the diseases. Chronic pain and inflammation, as well as related dreadful disorders, remain difficult to control due to a lack of safe and effective medications. In this work, biocompatible platinum nanoparticles with significant analgesic and anti-inflammatory action were synthesized through a wet chemical method using polyethylene glycol-400 as a capping agent and sodium borohydride as a reducing agent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!