Regulation of Leukocytes by TspanC8 Tetraspanins and the "Molecular Scissor" ADAM10.

Front Immunol

School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom.

Published: July 2018

A disintegrin and metalloproteinase 10 (ADAM10) is a ubiquitous transmembrane protein that functions as a "molecular scissor" to cleave the extracellular regions from its transmembrane target proteins. ADAM10 is well characterized as the ligand-dependent activator of Notch proteins, which control cell fate decisions. Indeed, conditional knockouts of ADAM10 in mice reveal impaired B-, T-, and myeloid cell development and/or function. ADAM10 cleaves many other leukocyte-expressed substrates. On B-cells, ADAM10 cleavage of the low-affinity IgE receptor CD23 promotes allergy and asthma, cleavage of ICOS ligand impairs antibody responses, and cleavage of the BAFF-APRIL receptor transmembrane activator and CAML interactor, and BAFF receptor, reduce B-cell survival. On microglia, increased ADAM10 cleavage of a rare variant of the scavenger receptor triggering receptor expressed on myeloid cells 2 may increase susceptibility to Alzheimer's disease. We and others recently showed that ADAM10 interacts with one of six different regulatory tetraspanin membrane proteins, which we termed the TspanC8 subgroup, comprising Tspan5, Tspan10, Tspan14, Tspan15, Tspan17, and Tspan33. The TspanC8s are required for ADAM10 exit from the endoplasmic reticulum, and emerging evidence suggests that they dictate ADAM10 subcellular localization and substrate specificity. Therefore, we propose that ADAM10 should not be regarded as a single scissor, but as six different scissors with distinct substrate specificities, depending on the associated TspanC8. In this review, we collate recent transcriptomic data to present the TspanC8 repertoires of leukocytes, and we discuss the potential role of the six TspanC8/ADAM10 scissors in leukocyte development and function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6036176PMC
http://dx.doi.org/10.3389/fimmu.2018.01451DOI Listing

Publication Analysis

Top Keywords

adam10
11
"molecular scissor"
8
adam10 cleavage
8
receptor
5
regulation leukocytes
4
tspanc8
4
leukocytes tspanc8
4
tspanc8 tetraspanins
4
tetraspanins "molecular
4
scissor" adam10
4

Similar Publications

BACE-1 and ADAM-10 as Potential Peripheral Biomarkers for Alzheimer's Disease.

Curr Pharm Des

January 2025

Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.

Amyloid beta (Aβ) dyshomeostasis is considered the main biological aberration in Alzheimer's Disease (AD) pathology. The interplay between Aβ formation and clearance is predominantly modulated by a disintegrin and a metalloproteinase 10 (ADAM10, α-secretase) and β-site APP Cleaving Enzyme 1 (BACE1), the two pivotal enzymes in both non-amyloidogenic/amyloidogenic and amyloidolytic pathways. Emerging evidence suggests that aberrations in ADAM10 and BACE1 expression, activity, and function in the brain of AD patients also manifest in peripheral fluids, suggesting their potential as blood-based biomarkers for AD diagnosis.

View Article and Find Full Text PDF

Soluble, circulating Klotho (sKlotho) is essential for normal health and renal function. sKlotho is shed from the renal distal convoluted tubule (DCT), its primary source, via enzymatic cleavage. However, the physiologic mechanisms that control sKlotho production, trafficking, and shedding are not fully defined.

View Article and Find Full Text PDF

Augmenting traditional genome-wide association studies (GWAS) with advanced machine learning algorithms can allow the detection of novel signals in available cohorts. We introduce "genome-wide association neural networks (GWANN)" a novel approach that uses neural networks (NNs) to perform a gene-level association study with family history of Alzheimer's disease (AD). In UK Biobank, we defined cases (n = 42 110) as those with AD or family history of AD and sampled an equal number of controls.

View Article and Find Full Text PDF

In this study, we aimed to evaluate the potential effects of white tea (WT) in the atherosclerosis process characterized by oxidative stress, inflammation, and dyslipidemia. In our study, apolipoprotein E knockout (ApoE) mice (RRID: IMSR_JAX:002052) and C57BL/6J mice (RRID: IMSR_JAX:000664) were used. In the atherosclerosis model induced by an atherogenic diet (AD), WT was administered via oral gavage at two different concentrations.

View Article and Find Full Text PDF

The MET Oncogene Network of Interacting Cell Surface Proteins.

Int J Mol Sci

December 2024

Department of Oncology, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy.

The MET oncogene, encoding the hepatocyte growth factor (HGF) receptor, plays a key role in tumorigenesis, invasion, and resistance to therapy, yet its full biological functions and activation mechanisms remain incompletely understood. A feature of MET is its extensive interaction network, encompassing the following: (i) receptor tyrosine kinases (RTKs); (ii) co-receptors (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!