Dispersion-Solvent Control of Ionomer Aggregation in a Polymer Electrolyte Membrane Fuel Cell.

Sci Rep

Department of Organic Material Science and Engineering, Pusan National University, 2, Busandaehak-ro 63beon gil, Geumjeong-gu, Busan, 46241, Republic of Korea.

Published: July 2018

In this study, we examined the influence of the dispersion solvent in three dipropylene-glycol/water (DPG/water) mixtures, with DPG contents of 0, 50, and 100 wt%, on ionomer morphology and distribution, using dynamic light scattering (DLS) and molecular-dynamics (MD) simulation techniques. The DLS results reveal that Nafion-ionomer aggregation increases with decreasing DPG content of the solvent. Increasing the proportion of water in the solvent also led to a gradual decrease in the radius of gyration (R) of the Nafion ionomer due to its strong backbone hydrophobicity. Correspondingly, MD simulations predict Nafion-ionomer solvation energies of -147 ± 9 kcal/mol in water, -216 ± 21 kcal/mol in the DPG/water mixture, and -444 ± 9 kcal/mol in DPG. These results suggest that higher water contents in mixed DPG/water solvents result in increased Nafion-ionomer aggregation and the subsequent deterioration of its uniform dispersion in the solvent. Moreover, radial distribution functions (RDFs) reveal that the (-CFCF-) backbones of the Nafion ionomer are primarily enclosed by DPG molecules, whereas the sulfonate groups (SO) of its side chains mostly interact with water molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048106PMC
http://dx.doi.org/10.1038/s41598-018-28779-yDOI Listing

Publication Analysis

Top Keywords

dispersion solvent
8
nafion-ionomer aggregation
8
nafion ionomer
8
dispersion-solvent control
4
ionomer
4
control ionomer
4
ionomer aggregation
4
aggregation polymer
4
polymer electrolyte
4
electrolyte membrane
4

Similar Publications

Histology Assessment of Chitosan-Polyvinyl Alcohol Scaffolds Incorporated with CaO Nanoparticles.

Molecules

January 2025

Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 760001, Colombia.

Scaffolds for regenerative therapy can be made from natural or synthetic polymers, each offering distinct benefits. Natural biopolymers like chitosan (CS) are biocompatible and biodegradable, supporting cell interactions, but lack mechanical strength. Synthetic polymers like polyvinyl alcohol (PVA) provide superior mechanical strength and cost efficiency but are not biodegradable or supportive of cell adhesion.

View Article and Find Full Text PDF

Deep eutectic solvents (DES) have emerged as versatile, sustainable media for the synthesis of nanomaterials due to their low toxicity, tunability, and biocompatibility. This study develops a one-step method to modify commercially available screen-printed electrodes (SPE) using laser-induced pyrolysis of DES, consisting of choline chloride and tartaric acid with dissolved nickel acetate and dispersed graphene. The electrodes were patterned using a 532 nm continuous-wave laser for the in situ formation of Ni nanoparticles decorated on graphene sheets directly on the SPE surface (Ni-G/SPE).

View Article and Find Full Text PDF

Characterizing dynamic heterogeneities during nanogel degradation.

Soft Matter

January 2025

Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, USA.

Understanding photodegradation of nanogels is critical for dynamic control of their properties and functionalities. We focus on nanogels formed by end-linking of four-arm polyethylene glycol precursors with photolabile groups and characterize dynamic heterogeneities in these systems during degradation. We use our recently developed dissipative particle dynamics framework that captures the controlled scission of bonds between the precursors and diffusion of degraded fragments at the mesoscale.

View Article and Find Full Text PDF

Crystalline Covalent Triazine Frameworks and 2D Triazine Polymers: Synthesis and Applications.

Acc Chem Res

January 2025

School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.

ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.

View Article and Find Full Text PDF

Recently, interest in eco-friendly techniques for producing antibacterial food packaging films has surged. Within this context, plasma polymerization is emerging as a promising approach for applying degradable antibacterial coatings on various plastic films. This research therefore employs an atmospheric pressure aerosol-assisted plasma deposition technique to create polyethylene glycol (PEG)-like coatings embedding zinc oxide nanoparticles (ZnO NPs) of varying sizes on polyethylene (PE) substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!