Intronic polymorphisms of the GABA receptor β subunit gene (GABRB2) under adaptive evolution were associated with schizophrenia and reduced expression, especially of the long isoform which differs in electrophysiological properties from the short isoform. The present study was directed to examining the gene dosage effects of Gabrb2 in knockout mice of both heterozygous (HT) and homozygous (KO) genotypes with respect to possible schizophrenia-like and comorbid phenotypes. The KO mice, and HT mice to a lesser extent, were found to display prepulse inhibition (PPI) deficit, locomotor hyperactivity, stereotypy, sociability impairments, spatial-working and spatial-reference memory deficits, reduced depression and anxiety, and accelerated pentylenetetrazol (PTZ)-induced seizure. In addition, the KO mice were highly susceptible to audiogenic epilepsy. Some of the behavioral phenotypes showed evidence of imprinting, gender effect and amelioration by the antipsychotic risperidone, and the audiogenic epilepsy was inhibited by the antiepileptic diazepam. GABAergic parvalbumin (PV)-positive interneuron dystrophy, astrocyte dystrophy, and extensive microglia activation were observed in the frontotemporal corticolimbic regions, and reduction of newborn neurons was observed in the hippocampus by immunohistochemical staining. The neuroinflammation indicated by microglial activation was accompanied by elevated brain levels of oxidative stress marker malondialdehyde (MDA) and the pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). These extensive schizophrenia-like and comorbid phenotypes brought about by Gabrb2 knockout, in conjunction with our previous findings on GABRB2 association with schizophrenia, support a pivotal role of GABRB2 in schizophrenia etiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048160 | PMC |
http://dx.doi.org/10.1038/s41398-018-0176-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!