Circular RNAs (circRNAs) are emerging species of mRNA splicing products with largely unknown functions. Although several computational pipelines for circRNA identification have been developed, these methods strictly rely on uniquely mapped reads overlapping back-splice junctions (BSJs) and lack approaches to model the statistical significance of the identified circRNAs. Here, we reported a systematic computational approach to identify circRNAs by simultaneously utilizing BSJ overlapping reads and discordant BSJ spanning reads to identify circRNAs. Moreover, we developed a novel procedure to estimate the P-values of the identified circRNAs. A computational cross-validation and experimental validations demonstrated that our method performed favorably compared to existing circRNA detection tools. We created a standalone tool, CircRNAFisher, to implement the method, which might be valuable to computational and experimental scientists studying circRNAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6318271 | PMC |
http://dx.doi.org/10.1038/s41401-018-0063-1 | DOI Listing |
Eur Heart J Cardiovasc Imaging
January 2025
Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy.
Aim: Computed tomography (CT)-derived extracellular volume fraction (ECV) is a non-invasive method to quantify myocardial fibrosis. Evaluating CT-ECV during aortic valve replacement (AVR) planning CT in severe aortic stenosis (AS) may aid prognostic stratification. This meta-analysis evaluated the prognostic significance of CT-ECV in severe AS necessitating AVR.
View Article and Find Full Text PDFNeuroradiol J
January 2025
Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Iran.
Introduction: The prevalence of neurodegenerative diseases has significantly increased, necessitating a deeper understanding of their symptoms, diagnostic processes, and prevention strategies. Frontotemporal dementia (FTD) and Alzheimer's disease (AD) are two prominent neurodegenerative conditions that present diagnostic challenges due to overlapping symptoms. To address these challenges, experts utilize a range of imaging techniques, including magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), functional MRI (fMRI), positron emission tomography (PET), and single-photon emission computed tomography (SPECT).
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Thermodynamics Research Center, National Institute of Standards and Technology, Boulder, Colorado 80305-3337, United States.
Our recently developed approach based on the local coupled-cluster with single, double, and perturbative triple excitation [LCCSD(T)] model gives very efficient means to compute the ideal-gas enthalpies of formation. The expanded uncertainty (95% confidence) of the method is about 3 kJ·mol for medium-sized compounds, comparable to typical experimental measurements. Larger compounds of interest often exhibit many conformations that can significantly differ in intramolecular interactions.
View Article and Find Full Text PDFPLoS One
January 2025
ESQlabs Gmbh, Saterland, Germany.
Digital twins, driven by data and mathematical modelling, have emerged as powerful tools for simulating complex biological systems. In this work, we focus on modelling the clearance on a liver-on-chip as a digital twin that closely mimics the clearance functionality of the human liver. Our approach involves the creation of a compartmental physiological model of the liver using ordinary differential equations (ODEs) to estimate pharmacokinetic (PK) parameters related to on-chip liver clearance.
View Article and Find Full Text PDFPLoS One
January 2025
Department of English and Communication, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
This study aims to provide an LLM (Large Language Model)-based method for the discourse analysis of media attitudes, and thereby investigate media attitudes towards China in a Hong Kong-based newspaper. Analysis of attitudes in large amounts of media data is crucial for understanding public opinions, market trends, social dynamics, etc. However, corpus-based approaches have traditionally focused on explicit linguistic expressions of attitudes, leaving implicit expressions unconsidered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!