Alternative therapeutic approaches against chronic hepatitis B virus (HBV) infection need to be urgently developed because current therapies are only virostatic. In this context, cell penetration peptides (CPPs) and their Peptide Nucleic Acids (PNAs) cargoes appear as a promising novel class of biologically active compounds. In this review we summarize different in vitro and in vivo studies, exploring the potential of CPPs as vehicles for intracellular delivery of PNAs targeting hepadnaviral replication. Thus, studies conducted in the duck HBV (DHBV) infection model showed that conjugation of (D-Arg)₈ CPP to PNA targeting viral epsilon (ε) were able to efficiently inhibit viral replication in vivo following intravenous administration to ducklings. Unexpectedly, some CPPs, (D-Arg)₈ and Decanoyl-(D-Arg)₈, alone displayed potent antiviral effect, altering late stages of DHBV and HBV morphogenesis. Such antiviral effects of CPPs may affect the sequence-specificity of CPP-PNA conjugates. By contrast, PNA conjugated to (D-Lys)₄ inhibited hepadnaviral replication without compromising sequence specificity. Interestingly, Lactose-modified CPP mediated the delivery of anti-HBV PNA to human hepatoma cells HepaRG, thus improving its antiviral activity. In light of these promising data, we believe that future studies will open new perspectives for translation of CPPs and CPP-PNA based technology to therapy of chronic hepatitis B.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165058PMC
http://dx.doi.org/10.3390/biom8030055DOI Listing

Publication Analysis

Top Keywords

hepadnaviral replication
12
peptide nucleic
8
targeting hepadnaviral
8
chronic hepatitis
8
cpps
5
developments cell-penetrating
4
cell-penetrating peptides
4
antiviral
4
peptides antiviral
4
antiviral agents
4

Similar Publications

Duck hepatitis B virus (DHBV) is an avian member of the hepatotropic DNA viruses, or hepadnaviridae. It shares with the human hepatitis B virus (HBV) a similar genomic organization and replication strategy via reverse transcription, but is simpler than HBV in lacking the X gene and in expressing just two coterminal envelope proteins: Large (L) and small (S). DHBV has been extensively used as a convenient and valuable animal model for study of the hepadnaviral life cycle, and for drug screening in vitro but also in vivo.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) replicates its genomic DNA by reverse transcription of an RNA intermediate, termed pregenomic RNA (pgRNA), within nucleocapsid. It had been shown that transfection of -transcribed pgRNA initiated viral replication in human hepatoma cells. We demonstrated here that viral capsids, single-stranded DNA, relaxed circular DNA (rcDNA) and covalently closed circular DNA (cccDNA) became detectable sequentially at 3, 6, 12, and 24 h post-pgRNA transfection into Huh7.

View Article and Find Full Text PDF

Hepadnaviruses use extensively overlapping genes to expand their coding capacity, especially the precore/core genes encode the precore and core proteins with mostly identical sequences but distinct functions. The precore protein of the woodchuck hepatitis virus (WHV) is N-glycosylated, in contrast to the precore of the human hepatitis B virus (HBV) that lacks N-glycosylation. To explore the roles of the N-linked glycosylation sites in precore and core functions, we substituted T77 and T92 in the WHV precore/core N-glycosylation motifs (75NIT77 and 90NDT92) with the corresponding HBV residues (E77 and N92) to eliminate the sequons.

View Article and Find Full Text PDF

Hepadnaviruses, including hepatitis B virus (HBV) as a major human pathogen, replicate their tiny 3 kb DNA genomes by capsid-internal protein-primed reverse transcription of a pregenomic (pg) RNA. Initiation requires productive binding of the viral polymerase, P protein, to a 5´ proximal bipartite stem-loop, the RNA encapsidation signal ε. Then a residue in the central ε bulge directs the covalent linkage of a complementary dNMP to a Tyr sidechain in P protein´s Terminal Protein (TP) domain.

View Article and Find Full Text PDF

Hepadnaviral Lymphotropism and Its Relevance to HBV Persistence and Pathogenesis.

Front Microbiol

August 2021

Molecular Virology and Hepatology Research Group, Division of Basic Medical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada.

Since the discovery of hepatitis B virus (HBV) over five decades ago, there have been many independent studies showing presence of HBV genomes in cells of the immune system. However, the nature of HBV lymphotropism and its significance with respect to HBV biology, persistence and the pathogenesis of liver and extrahepatic disorders remains underappreciated. This is in contrast to studies of other viral pathogens in which the capability to infect immune cells is an area of active investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!