Nanodiscs are self-assembled discoidal nanoparticles composed of amphiphilic α-helical scaffold proteins or peptides that accumulate around the circumference of a lipid bilayer. In this study, Pxt-5, which is an antimicrobial peptide isolated from the skin of Xenopus tropicalis, and its modified peptide (Modify-Pxt-5) were synthesized by solid-phase peptide synthesis (SPPS).Their surface properties, which are an important factor in inducing nanodisc formation, were investigated by circular dichroism (CD) spectroscopy, surface tension measurement, phospholipid vesicle clearance assay, and negative-staining transmission electron microscopy (NS-TEM). The α-helicity of Pxt-5 (8.4%) improved drastically to 45.6% by four amino-acid substitutions (Modify-Pxt-5). Both the peptides, having hydrophobic and hydrophilic faces, behaved like general surfactants, and the surface activity of Modify-Pxt-5 (CAC: 9.5×10 M, γ: 30.3 mN·m) was much higher than that of Pxt-5 (CAC: 7.9×10 M, γ: 38.1 mN·m). A turbid L-α-dimyristoylphosphatidylcholine (DMPC) vesicle solution (T = 0.3%) quickly turned transparent upon addition of Pxt-5 or Modify-Pxt-5. After twelve hours, the transmittance of vesicle solution with Modify-Pxt-5 (T = 96.2%) was found to be higher than that of vesicle solution with Pxt-5 (T = 83.5%), and then the micro-solubilized solutions were observed by NS-TEM. Interestingly, nanodisc structures were found in the vicinity of DMPC vesicles in both the images, and the average diameter of the nanodiscs was 11.2 ± 6.0 nm for those containing Pxt-5 and 10.8 ± 5.8 nm for those containing Modify-Pxt-5. It was also found that Modify-Pxt-5 effectively self-assembles into nanodiscs compared to Pxt-5 without any substitutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5650/jos.ess18051 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!