In cocaine use disorder, relapse can be elicited by drug-associated cues despite long periods of abstinence. The persistence of drug-associated cues in eliciting drug seeking suggests enduring changes in structural and functional plasticity, which may be mediated by basic fibroblast growth factor (bFGF, FGF2). Stimulant drug use increases bFGF expression in reward- and learning-related brain regions, such as the infralimbic medial-prefrontal cortex (IL-mPFC), and we previously found that this increase was reversed by extinction. However, whether bFGF expression is similarly modified in other brain regions is unknown. Therefore, we used the conditioned place preference (CPP) paradigm to assess bFGF expression following cocaine-associated CPP or extinction of that CPP within the mPFC, nucleus accumbens (NAc), hippocampus (Hipp), and basolateral amygdala (BLA). bFGF expression was increased in IL-mPFC and NAc-Core and -Shell following a cocaine-associated CPP, an effect reversed by extinction. Conversely, bFGF expression was increased in BLA following extinction, but no significant changes were observed in PL-mPFC or either dorsal or ventral Hipp. These results demonstrate differential regulation of bFGF following cocaine-associated CPP or extinction of that CPP in discrete brain regions. Changes in bFGF expression may regulate long-lasting drug-induced plasticity that underlies persistent drug-associated memories, and therefore present potential prophylactic targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6049391 | PMC |
http://dx.doi.org/10.1101/lm.047530.118 | DOI Listing |
Cells
January 2025
Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy.
Sci Rep
January 2025
Foot and Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
December 2024
Department of Rheumatology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China.
Objective To investigate the effect of serum containing Xinfeng capsule (XFC) on the angiogenesis of human umbilical vein endothelial cells (HUVEC) induced by rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) and its mechanism of action. Methods An in vitro co-culture model of RA-FLS and HUVEC was established. Serum containing XFC was prepared by oral gavage of SD rats.
View Article and Find Full Text PDFIndian J Plast Surg
December 2024
Department of Plastic, Reconstructive, and Hand Surgery, University of Tsukuba, 1-1-1Tennodai, Tsukuba, Ibaraki, Japan.
Perifascial areolar tissue (PAT) transplant is a technique in which a sheet of connective tissue on the fascia is harvested and transplanted to the wound bed. PAT engraftment fails when the exposed area of tendons, bones, or artificial materials is large. On the other hand, combination of tissue transplant and basic fibroblast growth factor (bFGF) improves the survival rate of the transplanted tissue.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
Background: Electrospun nanofiber scaffolds have been widely used in tissue engineering because they can mimic extracellular matrix-like structures and offer advantages including high porosity, large specific surface area, and customizable structure. In this study, we prepared scaffolds composed of aligned and random electrospun polycaprolactone (PCL) nanofibers capable of delivering basic fibroblast growth factor (bFGF) in a sustained manner for repairing damaged tendons.
Results: Aligned and random PCL fiber scaffolds containing bFGF-loaded bovine serum albumin (BSA) nanoparticles (BSA-bFGF NPs, diameter 146 ± 32 nm) were fabricated, respectively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!