A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bilateral carotid sinus nerve transection exacerbates morphine-induced respiratory depression. | LitMetric

Opioid-induced respiratory depression (OIRD) involves decreased sensitivity of ventilatory control systems to decreased blood levels of oxygen (hypoxia) and elevated levels of carbon dioxide (hypercapnia). Understanding the sites and mechanisms by which opioids elicit respiratory depression is pivotal for finding novel therapeutics to prevent and/or reverse OIRD. To examine the contribution of carotid body chemoreceptors OIRD, we used whole-body plethysmography to evaluate hypoxic (HVR) and hypercapnic (HCVR) ventilatory responses including changes in frequency of breathing, tidal volume, minute ventilation and inspiratory drive, after intravenous injection of morphine (10 mg/kg) in sham-operated (SHAM) and in bilateral carotid sinus nerve transected (CSNX) Sprague-Dawley rats. In SHAM rats, morphine produced sustained respiratory depression (e.g., decreases in tidal volume, minute ventilation and inspiratory drive) and reduced the HVR and HCVR responses. Unexpectedly, morphine-induced suppression of HVR and HCVR were substantially greater in CSNX rats than in SHAM rats. This suggests that morphine did not compromise the function of the carotid body-chemoafferent complex and indeed, that the carotid body acts to defend against morphine-induced respiratory depression. These data are the first in vivo evidence that carotid body chemoreceptor afferents defend against rather than participate in OIRD in conscious rats. As such, drugs that stimulate ventilation by targeting primary glomus cells and/or chemoafferent terminals in the carotid bodies may help to alleviate OIRD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091892PMC
http://dx.doi.org/10.1016/j.ejphar.2018.07.018DOI Listing

Publication Analysis

Top Keywords

respiratory depression
20
carotid body
12
bilateral carotid
8
carotid sinus
8
sinus nerve
8
morphine-induced respiratory
8
tidal volume
8
volume minute
8
minute ventilation
8
ventilation inspiratory
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!