Densovirus genome replication and capsid assembly take place in the nucleus of the infected cells. However, the mechanisms underlying such processes as the delivery of virus proteins to the nucleus and the export of progeny virus from the nucleus remain elusive. It is evident that nuclear transport signals should be involved in these processes. We performed an in silico search for the putative nuclear localization signal (NLS) and nuclear export signal (NES) motifs in the capsid proteins of the Densovirus 1 (BgDV1) densovirus. A high probability NLS motif was found in the common C-terminal of capsid proteins together with a NES motif in the unique N-terminal of VP2. We also performed a global search for the nuclear traffic signals in the densoviruses belonging to five Densovirinae genera, which revealed high diversity in the patterns of NLSs and NESs. Using a heterologous system, the HeLa mammalian cell line expressing GFP-fused BgDV1 capsid proteins, we demonstrated that both signals are functionally active. We suggest that the NLS shared by all three BgDV1 capsid proteins drives the trafficking of the newly-synthesized proteins into the nucleus, while the NES may play a role in the export of the newly-assembled BgDV1 particles into the cytoplasm through nuclear pore complexes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071259 | PMC |
http://dx.doi.org/10.3390/v10070370 | DOI Listing |
Anticancer Agents Med Chem
January 2025
Department of Gynecology, Lanzhou University Second Hospital Lanzhou University, Lanzhou, 730030, China.
Cervical cancer is a significant global health threat, ranking as the fourth most common malignancy among women and resulting in over 300,000 deaths annually. Although screening and vaccination initiatives have led to a decline in incidence rates, treatment options for advanced or recurrent cervical cancer remain inadequate, often proving ineffective and costly. In this context, adenoviral therapy has emerged as a promising strategy to enhance therapeutic outcomes.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA. Electronic address:
One of the striking features of human immunodeficiency virus (HIV) is the capsid, a fullerene cone comprised of pleomorphic capsid protein (CA) that shields the viral genome and recruits cofactors. Despite significant advances in understanding the mechanisms of HIV-1 CA assembly and host factor interactions, HIV-2 CA assembly remains poorly understood. By templating the assembly of HIV-2 CA on functionalized liposomes, we report high-resolution structures of the HIV-2 CA lattice, including both CA hexamers and pentamers, alone and with peptides of host phenylalanine-glycine (FG)-motif proteins Nup153 and CPSF6.
View Article and Find Full Text PDFViruses
January 2025
Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
This study aimed to create a new recombinant virus by modifying the EV-A71 capsid protein, serving as a useful tool and model for studying human Enteroviruses. We developed a new screening method using EV-A71 pseudovirus particles to systematically identify suitable insertion sites and tag types in the VP1 capsid protein. The pseudovirus's infectivity and replication can be assessed by measuring postinfection luciferase signals.
View Article and Find Full Text PDFViruses
December 2024
Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
Coliphage N4 is a representative species of the family of bacteriophages. Originally structurally studied in 2008, the capsid structure was solved to 14 Å to reveal an interesting arrangement of Ig-like decoration proteins across the surface of the capsid. Herein, we present a high-resolution N4 structure, reporting a 2.
View Article and Find Full Text PDFMolecular surveillance of FMD epidemiology is a fundamental tool for advancing our understanding of virus biology, monitoring virus evolution, and guiding vaccine design. The accessibility of genetic data will facilitate a more comprehensive delineation of FMDV phylogeny on a global scale. In this study, we investigated the FMDV strains circulating in Russia during the 2013-2014 period in geographically distant regions utilizing whole genome sequencing followed by maximum-likelihood phylogenetic reconstruction of whole genome and VP1 gene sequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!