In order to overcome the existing challenges presented by conventional sensors, including their large size, a complicated preparation process, and difficulties filling the sensing media, a novel high-sensitivity plasmonic resonator sensor which is composed of two graphene-modified straight waveguides, two metallic layers, and a racetrack nanodisk resonator is proposed in this study. The transmission characteristics, which were calculated by the finite element theory, were used to further analyze the sensing properties. The results of quantitative analysis show that the proposed plasmonic sensor generates two resonance peaks for the different incident wavelengths, and both resonance peaks can be tuned by temperature. In addition, after optimizing the structural parameters of the resonator, the Q value and the refractive sensitivity reached 21.5 and 1666.67 nmRIU, respectively. Compared with other studies, these values translate to a better performance. Furthermore, a temperature sensitivity of 2.33 nm/5°C was achieved, which allows the sensor to be easily applied to practical detection. The results of this study can broaden the useful range for a nanometer-scale temperature sensor with ultrafast real-time detection and resistance to electromagnetic interference.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099627 | PMC |
http://dx.doi.org/10.3390/molecules23071726 | DOI Listing |
Polymers (Basel)
January 2025
Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
As a veterinary drug, sulfamethazine is frequently used to control animal diseases. In this study, a novel molecularly imprinted photonic crystal sensor for the fast visual detection of sulfamethazine in milk and chicken has been developed. Under optimum preparation conditions, a molecularly imprinted, photonic crystal with an anti-opal structure and a clear bright color was prepared and characterized.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Information Engineering, Electronics and Telecommunications (DIET), "La Sapienza" University of Rome, 00184 Rome, Italy.
This research proposes an all-metal metamaterial-based absorber with a novel geometry capable of refractive index sensing in the terahertz (THz) range. The structure consists of four concentric diamond-shaped gold resonators on the top of a gold metal plate; the resonators increase in height by 2 µm moving from the outer to the inner resonators, making the design distinctive. This novel configuration has played a very significant role in achieving multiple ultra-narrow resonant absorption peaks that produce very high sensitivity when employed as a refractive index sensor.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
Flexible, wearable, piezoresistive sensors have significant potential for applications in wearable electronics and electronic skin fields due to their simple structure and durability. Highly sensitive, flexible, piezoresistive sensors with the ability to monitor laryngeal articulatory vibration supply a new, more comfortable and versatile way to aid communication for people with speech disorders. Here, we present a piezoresistive sensor with a novel microstructure that combines insulating and conductive properties.
View Article and Find Full Text PDFSensors (Basel)
January 2025
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
The detection of highly toxic chemicals such as phosgene is crucial for addressing the severe threats to human health and public safety posed by terrorist attacks and industrial mishaps. However, timely and precise monitoring of phosgene at a low cost remains a significant challenge. This work is the first to report a novel fluorescent system based on the Intramolecular Charge Transfer (ICT) effect, which can rapidly detect phosgene in both solution and gas phases with high sensitivity by integrating a benzo[1,2-b:6,5-b']dithiophene-4,5-diamine (BDTA) probe.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Food and Nutrition, College of Life Science and Nano Technology, Hannam University, Daejeon 34054, Republic of Korea.
High-sensitivity C-reactive protein (hs-CRP) is a marker of systemic inflammation and is associated with developing dyslipidemia. However, the causality between hs-CRP and dyslipidemia remains unresolved. This study aimed to investigate the relationship between hs-CRP concentrations and dyslipidemia and to explore the potential causal link using Mendelian randomization (MR) analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!