This paper is about quantum heat defined as the change in energy of a bath during a process. The presentation takes into account recent developments in classical strong-coupling thermodynamics and addresses a version of quantum heat that satisfies quantum-classical correspondence. The characteristic function and the full counting statistics of quantum heat are shown to be formally similar. The paper further shows that the method can be extended to more than one bath, e.g., two baths at different temperatures, which opens up the prospect of studying correlations and heat flow. The paper extends earlier results on the expected quantum heat in the setting of one bath [E. Aurell and R. Eichhorn, New J. Phys. 17, 065007 (2015)NJOPFM1367-263010.1088/1367-2630/17/6/065007; E. Aurell, Entropy 19, 595 (2017)ENTRFG1099-430010.3390/e19110595].
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.97.062117 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!