Dependence of extreme events on spatial location.

Phys Rev E

National Center for Theoretical Sciences, National Tsing Hua University, Hsinchu 30013,Taiwan.

Published: June 2018

To model the dependence of extreme events on locations, we consider extreme events of Brownian particles in a potential. We find that barring the exception of very large potentials and/or very small regions, in general, the probability of extreme events increases with the potential. Our approach is general and can be useful for studying several complex systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.97.062102DOI Listing

Publication Analysis

Top Keywords

extreme events
16
dependence extreme
8
events
4
events spatial
4
spatial location
4
location model
4
model dependence
4
events locations
4
locations consider
4
consider extreme
4

Similar Publications

Self-assembly by anti-repellent structures for programming particles with momentum.

Nat Commun

December 2024

Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin-si, Republic of Korea.

Self-assembled configurations are versatile for applications in which liquid-mediated phenomena are employed to ensure that static or mild physical interactions between assembling blocks take advantage of local energy minima. For granular materials, however, a particle's momentum in air leads to random collisions and the formation of disordered phases, eventually producing jammed configurations when densely packed. Therefore, unlike fluidic self-assembly, the self-assembly of dry particles typically lacks programmability based on density and ordering symmetry and has thus been limited in applications.

View Article and Find Full Text PDF

Proper exposure settings are crucial for modern machine vision cameras to accurately convert light into clear images. However, traditional auto-exposure solutions are vulnerable to illumination changes, splitting the continuous acquisition of unsaturated images, which significantly degrades the overall performance of underlying intelligent systems. Here we present the neuromorphic exposure control (NEC) system.

View Article and Find Full Text PDF

Climate change is intensifying extreme weather events, with severe implications for ecosystem dynamics. A key behavioural mechanism whereby animals may cope with such events is by altering their social structure, which in turn could influence epidemic risk. However, how and to what extent natural disasters affect disease risk via changes in sociality remains unexplored in animal populations.

View Article and Find Full Text PDF

A database for the outer sizes of tropical cyclones over the Middle Americas.

Data Brief

December 2024

Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.

Tropical cyclones (TCs) are catastrophic phenomena that constantly threaten populations settled in the tropics. Their direct effects (strong winds, storm surges, and intense precipitation) are confined near the TC center. On the other hand, the indirect effects are due to extreme rainfall events associated with rainbands distant from the TC center.

View Article and Find Full Text PDF

Introduction: Accurate and consistent data play a critical role in enabling health officials to make informed decisions regarding emerging trends in SARS-CoV-2 infections. Alongside traditional indicators such as the 7-day-incidence rate, wastewater-based epidemiology can provide valuable insights into SARS-CoV-2 concentration changes. However, the wastewater compositions and wastewater systems are rather complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!