Thermodynamics of non-Markovian reservoirs and heat engines.

Phys Rev E

Optics and Quantum Information Group, The Institute of Mathematical Sciences, HBNI, CIT Campus, Taramani, Chennai 600113, India.

Published: June 2018

We show that non-Markovian effects of the reservoirs can be used as a resource to extract work from an Otto cycle. The state transformation under non-Markovian dynamics is achieved via a two-step process, namely an isothermal process using a Markovian reservoir followed by an adiabatic process. From second law of thermodynamics, we show that the maximum amount of extractable work from the state prepared under the non-Markovian dynamics quantifies a lower bound of non-Markovianity. We illustrate our ideas with an explicit example of non-Markovian evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.97.062108DOI Listing

Publication Analysis

Top Keywords

non-markovian dynamics
8
thermodynamics non-markovian
4
non-markovian reservoirs
4
reservoirs heat
4
heat engines
4
non-markovian
4
engines non-markovian
4
non-markovian effects
4
effects reservoirs
4
reservoirs resource
4

Similar Publications

In this study, we present a comprehensive analysis of the motion of a tagged monomer within a Gaussian semiflexible polymer model. We carefully derived the generalized Langevin equation (GLE) that governs the motion of a tagged central monomer. This derivation involves integrating out all the other degrees of freedom within the polymer chain, thereby yielding an effective description of the viscoelastic motion of the tagged monomer.

View Article and Find Full Text PDF

Thermal-induced transitions between multistable states hold significant interest in stochastic thermodynamics and dynamical control with nanomechanical systems. Here, we study kinetic-energy-dependent over-barrier behaviors in the rotational degree of freedom of silica nanodumbells in tilted periodic potentials. In the rotational degree of freedom, nanodumbbells can undergo critical transitions between librations and rotations as the ellipticity of the trapping laser field changes.

View Article and Find Full Text PDF

Dynamics of non-Markovian systems is a classic problem yet it attracts everlasting activity in physics and beyond. A powerful tool for modeling such setups is the generalized Langevin equation, however, its analysis typically poses a major challenge even for numerical means. For this reason, various approximations have been proposed over the years that simplify the original model.

View Article and Find Full Text PDF

The full information about the interaction between a quantum emitter and an arbitrary electromagnetic environment is encoded in the so-called spectral density. We present an approach for describing such interaction in any coupling regime, providing a Lindblad-like master equation for the emitter dynamics when coupled to a general nanophotonic structure. Our framework is based on the splitting of the spectral density into two terms.

View Article and Find Full Text PDF

The present study delves into the dynamics of a specific form of queueing system described as an retrial queue. Here, the queue comprises two distinct categories of clients: transit clients and recurrent clients. Transit clients are those who appear at the queue following a Poisson process, reflecting a random arrival pattern commonly seen in queueing scenarios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!