We study the crossover from low-temperature to high-temperature fluctuations including Goldstone-dominated and critical fluctuations in confined isotropic and weakly anisotropic O(n)-symmetric systems on the basis of a finite-size renormalization-group approach at fixed dimension d introduced previously [V. Dohm, Phys. Rev. Lett. 110, 107207 (2013)PRLTAO0031-900710.1103/PhysRevLett.110.107207]. Our theory is formulated within the φ^{4} lattice model in a d-dimensional block geometry with periodic boundary conditions. We calculate the finite-size scaling functions F^{ex} and X of the excess free-energy density and the thermodynamic Casimir force, respectively, for 1≤n≤∞, 20 and for film geometry (ρ=0). Good overall agreement is found with Monte Carlo (MC) data for isotropic spin models with n=1,2,3. For ρ=0, the low-temperature limits of F^{ex} and X vanish for n=1, whereas they are finite for n≥2. For ρ>0 and n=1, we find a finite low-temperature limit of F^{ex}, which deviates from that of the Ising model. We attribute this deviation to the nonuniversal difference between the φ^{4} model with continuous variables and the Ising model with discrete variables. For n≥2 and ρ>0, a logarithmic divergence of F^{ex} in the low-temperature limit is predicted, in excellent agreement with MC data. For 2≤n≤∞ and ρ<ρ_{0}=0.8567 the Goldstone modes generate a negative low-temperature Casimir force that vanishes for ρ=ρ_{0} and becomes positive for ρ>ρ_{0}. For anisotropic systems a unified hypothesis of multiparameter universality is introduced for both bulk and confined systems. The dependence of their scaling functions on d(d+1)/2-1 microscopic anisotropy parameters implies a substantial reduction of the predictive power of the theory for anisotropic systems as compared to isotropic systems. An exact representation is derived for the nonuniversal large-distance behavior of the bulk correlation function of anisotropic systems and quantitative predictions are made. The validity of multiparameter universality is proven analytically for the d=2,n=1 universality class. A nonuniversal anisotropy-dependent minimum of the Casimir force scaling function X is found. Both the sign and magnitude of X and the shift of the film critical temperature are affected by the lattice anisotropy.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.97.062128DOI Listing

Publication Analysis

Top Keywords

anisotropic systems
16
crossover low-temperature
8
low-temperature high-temperature
8
high-temperature fluctuations
8
scaling functions
8
casimir force
8
low-temperature limit
8
ising model
8
multiparameter universality
8
systems
7

Similar Publications

A major goal of cancer biology is to understand the mechanisms driven by somatically acquired mutations. Two distinct methodologies-one analyzing mutation clustering within protein sequences and 3D structures, the other leveraging protein-protein interaction network topology-offer complementary strengths. We present NetFlow3D, a unified, end-to-end 3D structurally-informed protein interaction network propagation framework that maps the multiscale mechanistic effects of mutations.

View Article and Find Full Text PDF

Harnessing Hole Sites in 2D Monolayer C for Metal Cluster Anchoring.

J Phys Chem Lett

January 2025

MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China.

Synthesis of 2D quasi-hexagonal phase C (qHP C) has opened avenues for its application as a novel catalytic support. This study investigates the structure, stability, and anisotropic properties of Cu clusters anchored on the qHP C surface through density functional theory calculations. Our findings reveal that the Cu cluster preferentially occupies the intrinsic holes of the qHP C via one of its tetrahedral faces, resulting in enhanced stability and conductivity, with a significantly reduced band gap of 0.

View Article and Find Full Text PDF

Starch-derived hydrophilic malto-oligosaccharides (Glc, where n = 1-7) conjugated to hydrophobic solanesol through click chemistry, i.e., Glc-b-Sol copolymers, have demonstrated significant promise in developing fully natural block co-oligomers for solid-state nanopatterning applications.

View Article and Find Full Text PDF

In polymerization-induced phase separation, the impact of polymer-substrate interaction on the dynamics of phase separation for polymer blends is important in determining the final morphology and properties of polymer materials as the surface can act as another driving force for phase separation other than polymerization. We modify the previously-developed polymerizing Cahn-Hilliard (pCH) method by adding a surface potential to model the phase separation behavior of a mixture of two species independently undergoing linear step-growth polymerization in the presence of a surface. In our approach, we explicitly model polydispersity by separately considering different molecular-weight components with their own respective diffusion constants, and with the surface potential preferentially acting on only one species.

View Article and Find Full Text PDF

Inspired by counterintuitive water "swelling" ability of the hydrophobic moss of the genus Sphagnum (Peat moss), we prepared a hydrophobic pseudo-hydrogel (HPH), composed of a pure hydrophobic silicone elastomer with a tailored porous structure. In contrast to conventional hydrogels, HPH achieves absorption-induced volume expansion through surface tension induced elastocapillarity, presenting an unexpected absorption-induced volume expansion capability in hydrophobic matrices. We adopt a theoretical framework elucidating the interplay of surface tension induced elastocapillarity, providing insights into the absorption-induced volume expansion behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!