Two distinct excitable responses for a laser with a saturable absorber.

Phys Rev E

Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, Université Paris-Saclay, site de Marcoussis, 91460 Marcoussis, France.

Published: June 2018

Excitable lasers with saturable absorbers are currently investigated as potential candidates for low level spike processing tasks in integrated optical platforms. Following a small perturbation of a stable equilibrium, a single and intense laser pulse can be generated before returning to rest. Motivated by recent experiments [Selmi et al., Phys. Rev. E 94, 042219 (2016)10.1103/PhysRevE.94.042219], we consider the rate equations for a laser containing a saturable absorber (LSA) and analyze the effects of different initial perturbations. With its three steady states and following Hodgkin classification, the LSA is a Type I excitable system. By contrast to perturbations on the intensity leading to the same intensity pulse, perturbations on the gain generate pulses of different amplitudes. We explain these distinct behaviors by analyzing the slow-fast dynamics of the laser in each case. We first consider a two-variable LSA model for which the conditions of excitability can be explored in the phase plane in a transparent manner. We then concentrate on the full three variable LSA equations and analyze its solutions near a degenerate steady bifurcation point. This analysis generalizes previous results [Dubbeldam et al., Phys. Rev. E 60, 6580 (1999)1063-651X10.1103/PhysRevE.60.6580] for unequal carrier density rates. Last, we discuss a fundamental difference between neuron and laser models.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.97.062214DOI Listing

Publication Analysis

Top Keywords

laser saturable
8
saturable absorber
8
phys rev
8
laser
5
distinct excitable
4
excitable responses
4
responses laser
4
absorber excitable
4
excitable lasers
4
lasers saturable
4

Similar Publications

A Cu(I)-Based MOF with Nonlinear Optical Properties and a Favorable Optical Limit Threshold.

Nanomaterials (Basel)

January 2025

Key Laboratory of Organic Integrated Circuit, Tianjin Key Laboratory of Molecular Optoelectronic Sciences & Ministry of Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.

The exploitation of high-performance third-order nonlinear optical (NLO) materials that have a favorable optical limit (OL) threshold is essential due to a rise in the application of ultra-intense lasers. In this study, a Cu-based MOF (denoted as Cu-bpy) was synthesized, and its third-order NLO and OL properties were investigated using the Z-scan technique with the nanosecond laser pulse excitation set at 532 nm. The Cu-bpy exhibits a typical rate of reverse saturable absorption (RSA) with a third-order nonlinear absorption coefficient of 100 cm GW and a favorable OL threshold of 0.

View Article and Find Full Text PDF

Transition metal based optical limiting materials have garnered significant attention due their crucial role in protecting sensitive optical system from high intense laser damage. Transition metal molybdates exhibits nonlinear optical (NLO) response, which attenuate highly intense light by transmitting light of desired intensity. Herein we report Silver molybdate (AgMoO) nanostructures doped with erbium (Er) ions were successfully synthesized by simple co-precipitation technique.

View Article and Find Full Text PDF

An intelligent controlled spatiotemporal mode-locked (STML) fiber laser based on a photonic lantern (PL) is proposed and experimentally demonstrated. A pair of in-house developed PLs is spliced into the cavity in a back-to-back structure. This PL-based structure functions as a mode multiplexer/demultiplexer to generate higher-order spatial modes.

View Article and Find Full Text PDF

As an emerging two-dimensional (2D) Group-VA material, bismuth selenide (BiSe) exhibits favorable electrical and optical properties. Here, three distinct morphologies of BiSe were obtained from bulk BiSe through electrochemical intercalation exfoliation. And the morphologies of these nanostructures can be tuned by adjusting solvent polarity during exfoliation.

View Article and Find Full Text PDF

Tunable Multisoliton State Ultrafast Fiber Laser Based on NiSe and Generation of Vector Dual-Wavelength Solitons.

ACS Appl Mater Interfaces

January 2025

College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an 311300, China.

As a member of the chalcogenide family, NiSe exhibits a direct bandgap of 1.74 eV, making it a promising candidate for nonlinear optical devices. However, its potential in the near-infrared region of the telecommunication band has not been fully explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!