Phys Rev E
Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China.
Published: June 2018
The radiative transfer equation (RTE) has two asymptotic regimes characterized by the optical thickness, namely, optically thin and optically thick regimes. In the optically thin regime, a ballistic or kinetic transport is dominant. In the optically thick regime, energy transport is totally dominated by multiple collisions between photons; that is, the photons propagate by means of diffusion. To obtain convergent solutions to the RTE, conventional numerical schemes have a strong dependence on the number of spatial grids, which leads to a serious computational inefficiency in the regime where the diffusion is predominant. In this work, a discrete unified gas kinetic scheme (DUGKS) is developed to predict radiative heat transfer in participating media. Numerical performances of the DUGKS are compared in detail with conventional methods through three cases including one-dimensional transient radiative heat transfer, two-dimensional steady radiative heat transfer, and three-dimensional multiscale radiative heat transfer. Due to the asymptotic preserving property, the present method with relatively coarse grids gives accurate and reliable numerical solutions for large, small, and in-between values of optical thickness, and, especially in the optically thick regime, the DUGKS demonstrates a pronounced computational efficiency advantage over the conventional numerical models. In addition, the DUGKS has a promising potential in the study of multiscale radiative heat transfer inside the participating medium with a transition from optically thin to optically thick regimes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.97.063302 | DOI Listing |
Int J Biol Macromol
January 2025
School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 43200, China.
Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China.
This study analyzes the impact of slip-dependent zeta potential on the heat transfer characteristics of nanofluids in cylindrical microchannels with consideration of thermal radiation effects. An analytical model is developed, accounting for the coupling between surface potential and interfacial slip. The linearized Poisson-Boltzmann equation, along with the momentum and energy conservation equations, is solved analytically to obtain the electrical potential field, velocity field, temperature distribution, and Nusselt number for both slip-dependent (SD) and slip-independent (SI) zeta potentials.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Energy System Engineering, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, No. 15, Pardis St., Molasadra Ave., Vanak Sq., Tehran, Iran.
The rising global demand for air conditioning systems, driven by increasing temperatures and urbanization, has led to higher energy consumption and greenhouse gas emissions. HVAC systems, particularly AC, account for nearly half of building energy use, highlighting the need for efficient cooling solutions. Passive cooling, especially radiative cooling, offers potential to reduce cooling loads and improve energy efficiency.
View Article and Find Full Text PDFSci Rep
January 2025
Lawrence Livermore National Laboratory, Livermore, CA, USA.
Climate models simulate a wide range of temperatures in the Arctic. Here we investigate one of the main drivers of changes in surface temperature: the net surface heat flux in the models. We show that in the winter months of the dark Arctic, there is a more than two-fold difference in the net surface heat fluxes among the models, and this difference is dominated by the downward infrared radiation from clouds.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
Radiative cooling is an excellent strategy for mitigating global warming, by enhancing heat fluxes away from the Earth, thus balancing the Earth's heat flow. However, for randomly particle-dispersed radiative cooling materials, the particle content as high as 94-96 wt % or 60 vol %, far exceeds the critical pigment percentage (40-50%) of traditional coatings, preventing its large-scale application. Here, inspired by particle deposition under gravity in solution, we demonstrate an auto-deposited SiO composite radiative cooling coating (ADRC) which reduces the amounts of particles required and lowers costs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.