Although thousands of long non-coding RNAs (lncRNA) have been identified in the genomes of higher eukaryotes, the precise function of most of them is still unclear. Here, we show that a >65 kb, male-specific, lncRNA, called male-specific abdominal (msa) is required for the development of the secondary cells of the Drosophila male accessory gland (AG). msa is transcribed from within the Drosophila bithorax complex and shares much of its sequence with another lncRNA, the iab-8 lncRNA, which is involved in the development of the central nervous system (CNS). Both lncRNAs perform much of their functions via a shared miRNA embedded within their sequences. Loss of msa, or of the miRNA it contains, causes defects in secondary cell morphology and reduces male fertility. Although both lncRNAs express the same miRNA, the phenotype in the secondary cells and the CNS seem to reflect misregulation of different targets in the two tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6067764 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1007519 | DOI Listing |
PLoS Genet
September 2024
University of Geneva Department of Genetics and Evolution, Geneva, Switzerland.
Although originally classified as a non-coding RNA, the male-specific abdominal (MSA) RNA from the Drosophila melanogaster bithorax complex has recently been shown to code for a micropeptide that plays a vital role in determining how mated females use stored sperm after mating. Interestingly, the MSA transcript is a male-specific version of another transcript produced in both sexes within the posterior central nervous system from an alternative promoter, called the iab-8 lncRNA. However, while the MSA transcript produces a small peptide, it seems that the iab-8 transcript does not.
View Article and Find Full Text PDFObjective: The U.S. Army uses sex-specific circumference-based prediction equations to estimate percent body fat (%BF) to evaluate adherence to body composition standards.
View Article and Find Full Text PDFSci Rep
February 2024
Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan.
Drosophila melanogaster has a pair of male-specific muscles called the muscle of Lawrence (MOL) in abdominal segment 5 (A5) of adult flies. The MOL is produced only when its innervating motoneuron expresses FruitlessM (FruM) neural masculinizing proteins. We show that MOL induction is hampered by: (1) silencing electrical activities in the motoneuron, (2) blocking vesicular release from the motoneuron, and (3) knocking down Activin ß (Actß) in the motoneuron or knocking down Actß signaling pathway components in the myoblasts.
View Article and Find Full Text PDFEur J Prev Cardiol
January 2024
Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden.
Aims: The aim of this study is to investigate how genetic variations in genes related to oxidative stress, intake of antioxidant vitamins, and any potential interactions between these factors affect the incidence of intact abdominal aortic aneurysm (AAA) and its rupture (rAAA), accounting for sex differences where possible.
Methods And Results: The present retrospective cohort study (n = 25 252) uses baseline single-nucleotide polymorphisms (SNPs) and total antioxidant vitamin intake data from the large population-based, Malmö Diet and Cancer Study. Cumulative incidence of intact AAA was 1.
Cell Tissue Res
June 2023
Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia.
Ion transport peptide (ITP) and a longer ITP-like (ITPL) are alternatively spliced insect neuropeptides involved in the regulation of development and water homeostasis. Using in situ hybridisation and immunohistochemistry, we determined site- and stage-specific expression of each peptide in Bombyx mori. Each peptide was differentially expressed, except for the prominent overlapping expression of both peptides in six pairs of the brain neurosecretory cells Ia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!