Transition metal-catalyzed C-H bond functionalizations have been the focus of intensive research over the last decades for the formation of C-C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy compared to the traditional catalytic cross-coupling reactions. However, such methods still suffer from several limitations including functional group tolerance and the lack of regioselectivity. In addition, they often require harsh reaction conditions and some of them need the use of strong oxidant, in a stoichiometric amount, avoiding these processes to be truly eco-friendly. The use of photoredox catalysis has contributed to a significant expansion of the scope of C(sp)-H bond functionalizations which include the direct arylations, (perfluoro)alkylations, acylations, and even cyanations. Most of these transformations involve the photochemical induced generation of a radical followed by its regioselective addition to arenes, heteroarenes, or alkenes, leading to the building of a new C(sp)-C bond. The use of photoredox catalysis plays crucial roles in these reactions promoting electron transfer, enabling the generation of radical species and single electron either oxidation or reduction. Such reactions operating at room temperature allow the building of C-C bonds with high chemo-, regio-, or stereoselectivity. This review surveys the formation of C(sp)-C bonds initiated by photoredox catalysis which involves a C(sp)-H bond functionalization step, describes the advantages compared to traditional C(sp)-H bond functionalizations, and presents mechanistic insights into the role played by the photoredox catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrev.8b00077 | DOI Listing |
Chem Sci
January 2025
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 Gansu China
Substantial advancements have been achieved in the field of photocatalytic borylation utilizing 4c-7e Lewis base-boryl radicals. However, the utilization of 3c-5e neutral boryl radicals for C-B bond formation remains relatively underexplored due to their inherent instability. In this study, we successfully demonstrated the direct construction of C-B bonds using sodium tetraarylborate as a key reagent.
View Article and Find Full Text PDFOrg Lett
January 2025
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
4'-Selective alkylation of nucleosides has been recognized as one of the ideal and straightforward approaches to chemically modified nucleosides, but such a transformation has been scarce and less explored. In this Letter, we combine a visible-light-mediated photoredox catalysis and hydrogen atom transfer (HAT) auxiliary to achieve β-C(sp)-H alkylation of alcohol on tetrahydrofurfuryl alcohol scaffolds and exploit it for 4'-selective alkylation of nucleosides. The reaction involves an intramolecular 1,5-HAT process and stereocontrolled Giese addition of the resultant radicals.
View Article and Find Full Text PDFChem Sci
December 2024
College of Materials Science and Engineering, Fuzhou University New Campus 350108 China
Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately retarding their widespread applications in photoredox catalysis. Are metal NCs definitely superior to metal NYs in heterogeneous photocatalysis in terms of structural merits? To unlock this mystery, herein, we conceptually demonstrate how to rationally manipulate the instability of metal NCs to construct high-efficiency artificial photosystems and examine how the metal NYs self-transformed from metal NCs influence charge transfer in photoredox selective organic transformation. To our surprise, the results indicate that the Schottky-type electron-trapping ability of Au NYs surpasses the photosensitization effect of glutathione (GSH)-protected Au clusters [Au(GSH) NCs] in mediating charge separation and enhancing photoactivities towards selective photoreduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light irradiation.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry and School of Pharmacy, China State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
Here we present a regio- and stereoselective alkylation approach for unprotected saccharides using synergistic boronic acid and photoredox catalysis. Targeting the equatorial C-H bond of the -1,2-diol motif, this method employs MeB(OH) as a catalyst. Mechanistic investigations indicate that the formation of a tetracoordinate boron species, resulting from the interaction between the cyclic boronic diol ester and a free hydroxyl group in the saccharide, is critical to this transformation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Jiao Tong University, Chemistry, 800 Dongchuan RD. Minhang District, 200240, Shanghai, CHINA.
A synergistic photoredox/cobalt/chromium triple catalysis system for regioselective, enantioselective, and diastereoselective 1,4-hydrocarbonation of readily available 1,3-enyne precursors was explored, providing a modular synthetic platform for various trisubstituted axially chiral allenes bearing an extra central chirality. The protocol features a broad substrate scope, good functional group tolerance, excellent selectivity, and mild reaction conditions. Furthermore, a possible reaction mechanism is proposed based on numerous control experiments and density functional theory calculations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!