Differentially Expressed MicroRNAs Link Cellular Physiology to Phenotypic Changes in Rice Under Stress Conditions.

Plant Cell Physiol

Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.

Published: October 2018

Plant microRNAs (miRNAs) and their target genes have important functional roles in nutrition deficiency and stress response. However, the underlying mechanisms relating relative expression of miRNAs and target mRNAs to morphological adjustments are not well defined. By combining miRNA expression profiles, corresponding target genes and transcription factors that bind to computationally identified over-represented cis-regulatory elements (CREs) common in miRNAs and target gene promoters, we implement a strategy that identifies a set of differentially expressed regulatory interactions which, in turn, relate underlying cellular mechanisms to some of the phenotypic changes observed. Integration of experimentally reported individual interactions with identified regulatory interactions explains how (i) during mineral deficiency osa-miR167 inhibits shoot growth but activates adventitious root growth by influencing free auxin content; (ii) during sulfur deficiency osa-miR394 is involved in adventitious root growth inhibition, sulfur and iron homeostasis, and auxin-mediated regulation of sulfur homeostasis; (iii) osa-miR399 contributes to cross-talk between cytokinin and phosphorus deficiency signaling; and (iv) a feed-forward loop involving the osa-miR166, trihelix and HD-ZIP III transcription factors may regulate leaf senescence during drought. This strategy not only identifies various regulatory interactions connecting phenotypic changes with cellular or molecular events triggered by stress, but also provides a framework to deepen our understanding of stress cellular physiology.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcy136DOI Listing

Publication Analysis

Top Keywords

phenotypic changes
12
mirnas target
12
regulatory interactions
12
differentially expressed
8
cellular physiology
8
target genes
8
transcription factors
8
strategy identifies
8
adventitious root
8
root growth
8

Similar Publications

Introduction: Tuberculosis (TB) is the deadliest infectious disease worldwide and novel vaccines are urgently needed. HLA-E is a virtually monomorphic antigen presentation molecule and is not downregulated upon HIV co-infection. HLA-E restricted specific CD8 T cells are present in the circulation of individuals with active TB (aTB) and infection (TBI) with or without HIV co-infection, making HLA-E restricted T cells interesting vaccination targets for TB.

View Article and Find Full Text PDF

Sulforaphane (SF) is a sulfur (S)-containing isothiocyanate found in cruciferous vegetables and is known for its potent anticancer properties. Broccoli sprouts, in particular, are considered safe and healthy dietary choices due to their high SF content and other beneficial biological activities, such as enhanced metabolite ingestion. The application of selenium (Se) is an excellent approach to enhance the abundance of SF.

View Article and Find Full Text PDF

We describe the phenotypic and genotypic spectrum of patients with vascular anomaly (VA) in a paediatric multi-disciplinary VA clinic. We measured the clinical utility of genotyping by comparing pre and posttest diagnosis and management. A 46-month retrospective analysis occurred for 250 patients offered genetic testing in the VA clinic.

View Article and Find Full Text PDF

AutoGP: An Intelligent Breeding Platform for Enhancing Maize Genomic Selection.

Plant Commun

January 2025

National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Hubei, China. Electronic address:

In the face of climate change and the growing global population, there is an urgent need to accelerate the development of high-yielding crop varieties. To this end, vast amounts of genotype-to-phenotype data have been collected, and many machine learning (ML) models have been developed to predict phenotype from a given genotype. However, the requirement for high densities of single-nucleotide polymorphisms (SNPs) and the labor-intensive collection of phenotypic data are hampering the use of these models to advance breeding.

View Article and Find Full Text PDF

Enthesitis, or inflammation specific to sites in the body where tendon inserts into bone, can arise in isolated joints from overuse or in multiple joints as a complication of an autoimmune condition such as psoriatic arthritis or spondyloarthritis. However, the pathogenesis of enthesitis is not well understood, so treatment strategies are limited. A clinically relevant animal model of enthesitis would allow investigators to determine mechanisms driving the disease and evaluate novel therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!