Carbamazepine reduces disease severity in a mouse model of metaphyseal chondrodysplasia type Schmid caused by a premature stop codon (Y632X) in the Col10a1 gene.

Hum Mol Genet

Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.

Published: November 2018

Mutations, mostly in the region of the COL10A1 gene encoding the C-terminal non-collagenous domain, cause the dwarfism metaphyseal chondrodysplasia type Schmid (MCDS). In most cases, the disease mechanism involves the misfolding of the mutant protein causing increased endoplasmic reticulum (ER) stress and an unfolded protein response (UPR). However, in an iliac crest biopsy, the COL10A1 p.Y632X mutation was found to produce instability of the mutant mRNA such that little mutant protein may be produced. To investigate the disease mechanism further, a gene-targeted mouse model of the Col10a1 p.Y632X mutation was generated. In this model, the mutant mRNA showed no instability, and in mice heterozygous for the mutation, mutant and wild-type mRNAs were present at equal concentrations. The protein was translated from the mutant allele and retained within the cell, triggering increased ER stress and a UPR. The mutation produced a relatively severe form of MCDS. Nevertheless, treatment of the mice with carbamazepine (CBZ), a drug which stimulates intracellular proteolysis and alleviates ER stress, effectively reduced the disease severity in this model of MCDS caused by a premature stop codon in the Col10a1 gene. Specifically, the drug reduced ER stress in the growth plate, restored growth plate architecture toward the wild-type state, significantly increased bone growth and within 2 weeks of treatment corrected the MCDS-induced hip distortion. These results indicate that CBZ is likely to be effective in ongoing clinical trials against all forms of MCDS whether caused by premature stop codons or substitutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6216233PMC
http://dx.doi.org/10.1093/hmg/ddy253DOI Listing

Publication Analysis

Top Keywords

caused premature
12
col10a1 gene
12
disease severity
8
mouse model
8
metaphyseal chondrodysplasia
8
chondrodysplasia type
8
type schmid
8
premature codon
8
disease mechanism
8
mutant protein
8

Similar Publications

Oxidative stress (OS) is established as a key factor in the etiology of both male and female infertility, arising from an imbalance between reactive oxygen species (ROS) production and the endogenous antioxidant (AOX) defenses. In men, OS adversely affects sperm function by inducing DNA damage, reducing motility, significantly impairing sperm vitality through plasma membrane peroxidation and loss of membrane integrity, and ultimately compromising overall sperm quality. In women, OS is implicated in various reproductive disorders, including polycystic ovary syndrome, endometriosis, and premature ovarian failure, leading to diminished oocyte quality, disrupted folliculogenesis, and poorer reproductive outcomes.

View Article and Find Full Text PDF

Background: The early colonization and establishment of the microbiome in newborns is a crucial step in the development of the immune system and host metabolism. However, the exact timing of initial microbial colonization remains a subject of ongoing debate. While numerous studies have attempted to determine the presence or absence of intrauterine bacteria, the majority of them have drawn conclusions based on sequencing data from maternal or infant samples taken at a single time point.

View Article and Find Full Text PDF

Objective: To discuss the elbow skin fold extension line in Kirschner wire internal fixation of extended supracondylar humeral fractures in children.

Methods: The clinical data of 58 children with extended supracondylar fractures of the humerus who met the selection criteria between August 2021 and July 2024 were retrospectively analyzed. In 28 cases, needle placement of medial epicondyle of humerus was performed with the assistance of the elbow skin fold extension line (study group), and 30 cases were assisted by routine touch of the medial epicondyle of the humerus (control group).

View Article and Find Full Text PDF

Exploring the impact of nano platinum-hydrogen saline on oxygen-induced retinopathy in neonatal rats.

J Matern Fetal Neonatal Med

December 2025

Department of Pediatrics, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan No.1 Hospital, Wuhan, China.

Objective: The objective of this study is to assess the impact of nano platinum-hydrogen saline (Pt NPs + H) on oxygen-induced retinopathy (OIR) in neonatal rats, with the goal to contribute new insights into the therapeutic strategies for retinopathy of prematurity.

Methods: Pt NPs + H formulation was synthesized to address OIR in a rat model. Subsequent examination included the assessment of retinal blood vessel distribution and morphology through hematoxylin and eosin (HE) and isolectin B4 (IB4) staining techniques.

View Article and Find Full Text PDF

Background: Type 2 diabetes (T2D) is a leading cause of premature morbidity and mortality globally and affects more than 100 million people in the world's most populous country, India. Nutrition is a critical and evidence-based component of effective blood glucose control and most dietary advice emphasizes carbohydrate and calorie reduction. Emerging global evidence demonstrates marked interindividual differences in postprandial glucose response (PPGR) although no such data exists in India and previous studies have primarily evaluated PPGR variation in individuals without diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!