A Small Animal Model of Ex Vivo Normothermic Liver Perfusion.

J Vis Exp

Collaboration for Organ Perfusion, Protection, Engineering and Regeneration (COPPER) Lab, Division of Transplant, Department of Surgery, Comprehensive Transplant Center, Ohio State University Wexner Medical Center; Department of Surgery, Division of Transplant, Ohio State University Wexner Medical Center;

Published: June 2018

AI Article Synopsis

Article Abstract

There is a significant shortage of liver allografts available for transplantation, and in response the donor criteria have been expanded. As a result, normothermic ex vivo liver perfusion (NEVLP) has been introduced as a method to evaluate and modify organ function. NEVLP has many advantages in comparison to hypothermic and subnormothermic perfusion including reduced preservation injury, restoration of normal organ function under physiologic conditions, assessment of organ performance, and as a platform for organ repair, remodeling, and modification. Both murine and porcine NEVLP models have been described. We demonstrate a rat model of NEVLP and use this model to show one of its important applications - the use of a therapeutic molecule added to liver perfusate. Catalase is an endogenous reactive oxygen species (ROS) scavenger and has been demonstrated to decrease ischemia-reperfusion in the eye, brain, and lung. Pegylation has been shown to target catalase to the endothelium. Here, we added pegylated-catalase (PEG-CAT) to the base perfusate and demonstrated its ability to mitigate liver preservation injury. An advantage of our rodent NEVLP model is that it is inexpensive in comparison to larger animal models. A limitation of this study is that it does not currently include post-perfusion liver transplantation. Therefore, prediction of the function of the organ post-transplantation cannot be made with certainty. However, the rat liver transplant model is well established and certainly could be used in conjunction with this model. In conclusion, we have demonstrated an inexpensive, simple, easily replicable NEVLP model using rats. Applications of this model can include testing novel perfusates and perfusate additives, testing software designed for organ evaluation, and experiments designed to repair organs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6102010PMC
http://dx.doi.org/10.3791/57541DOI Listing

Publication Analysis

Top Keywords

nevlp model
12
model
8
liver perfusion
8
organ function
8
preservation injury
8
liver
7
nevlp
6
organ
6
small animal
4
animal model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!