α-Xenorhabdolysins (Xax) are α-pore-forming toxins (α-PFT) that form 1-1.3 MDa large pore complexes to perforate the host cell membrane. PFTs are used by a variety of bacterial pathogens to attack host cells. Due to the lack of structural information, the molecular mechanism of action of Xax toxins is poorly understood. Here, we report the cryo-EM structure of the XaxAB pore complex from and the crystal structures of the soluble monomers of XaxA and XaxB. The structures reveal that XaxA and XaxB are built similarly and appear as heterodimers in the 12-15 subunits containing pore, classifying XaxAB as bi-component α-PFT. Major conformational changes in XaxB, including the swinging out of an amphipathic helix are responsible for membrane insertion. XaxA acts as an activator and stabilizer for XaxB that forms the actual transmembrane pore. Based on our results, we propose a novel structural model for the mechanism of Xax intoxication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6086661 | PMC |
http://dx.doi.org/10.7554/eLife.38017 | DOI Listing |
Plant Sci
January 2025
Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China. Electronic address:
The stripe color of watermelon is a vital commercial trait and is the focus of attention of consumers and researchers. However, the genetic determinants of watermelon stripe color are incompletely understood. Based on the results of preliminary localization studies, we constructed a large-capacity F generation population (710 plants) using light-green striped ZXG1555 and green-striped Cream of Saskatchewan (COS) watermelon strains as parental lines for fine mapping.
View Article and Find Full Text PDFBiochemistry
January 2025
Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
The mitochondrial outer membrane (OMM) β-barrel proteins link the mitochondrion with the cytosol, endoplasmic reticulum, and other cellular membranes, establishing cellular homeostasis. Their active insertion and assembly in the outer mitochondrial membrane is achieved in an energy-independent yet highly effective manner by the Sorting and Assembly Machinery (SAM) of the OMM. The core SAM constituent is the 16-stranded transmembrane β-barrel Sam50.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
Outer mitochondrial membrane (OMM) proteins communicate with the cytosol and other organelles, including the endoplasmic reticulum. This communication is important in thermogenic adipocytes to increase the energy expenditure that controls body temperature and weight. However, the regulatory mechanisms of OMM protein insertion are poorly understood.
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
January 2025
Department of Radiology, Istanbul Training and Research Hospital, University of Health Sciences, Istanbul, Turkey.
Purpose: Cochlear implantation (CI) surgery is essential for restoring hearing in individuals with severe sensorineural hearing loss. Accurate placement of the electrode within the cochlea is essential for successful auditory outcomes and minimizing complications. This study aims to analyze the relationship between the round window niche (RWN) alignment, its visibility during surgery, and the impact on surgical techniques and outcomes.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Amsterdam UMC, Amsterdam, Netherlands.
Background: The TMEM106B protein is critical for proper functioning of the endolysomal system, which is utilised by all cells to traffic and degrade molecular cargo. Genome-wide association studies identified a haplotype in the TMEM106B gene that is associated with increased risk for Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal lobar degeneration with TAR DNA binding protein inclusions (FTLD-TDP). However, the causal variant that drives the association has thus far remained elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!