Heparanase is the sole mammalian enzyme capable of cleaving glycosaminoglycan heparan sulfate side chains of heparan sulfate proteoglycans. Its altered activity is intimately associated with tumor growth, angiogenesis, and metastasis. Thus, its implication in cancer progression makes it an attractive target in anticancer therapy. Herein, we describe the design, synthesis, and biological evaluation of new benzazoles as heparanase inhibitors. Most of the designed derivatives were active at micromolar or submicromolar concentration, and the most promising compounds are fluorinated and/or amino acids derivatives 13a, 14d, and 15 that showed IC 0.16-0.82 μM. Molecular docking studies were performed to rationalize their interaction with the enzyme catalytic site. Importantly, invasion assay confirmed the antimetastatic potential of compounds 14d and 15. Consistently with its ability to inhibit heparanase, compound 15 proved to decrease expression of genes encoding for proangiogenic factors such as MMP-9, VEGF, and FGFs in tumor cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.8b00908DOI Listing

Publication Analysis

Top Keywords

heparan sulfate
8
novel benzazole
4
benzazole derivatives
4
derivatives endowed
4
endowed potent
4
potent antiheparanase
4
antiheparanase activity
4
activity heparanase
4
heparanase sole
4
sole mammalian
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!