Interaction of silica nanoparticles with tau proteins and PC12 cells: Colloidal stability, thermodynamic, docking, and cellular studies.

Int J Biol Macromol

Department of Nanotechnology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran. Electronic address:

Published: October 2018

Study on the side effects of the nanoparticles (NPs) can provide useful information regarding their biological and medical applications. Herein, the colloidal stability of the silicon dioxide NPs (SiO NPs) in the absence and presence of tau was investigated by TEM and DLS techniques. Afterwards, the thermodynamic parameters of interaction between SiO NPs and tau were determined by fluorescence spectroscopy and docking studies. Finally, the cytotoxic effects of SiO NPs on the viability of PC12 cells were investigated by MTT, AO/EB staining and flow cytometry assays. TEM, DLS, and zeta potential investigations revealed that tau can reduce the colloidal stability of SiO NPs. Fluorescence spectroscopy study indicated that SiO NPs bound to the tau with high affinity through hydrogen bonds and van der Waals interactions. Docking study also determined that Ser, Thr and Tyr residues provide a polar microenvironment for SiO NPs/tau interaction. Cellular studies demonstrated that SiO NPs can induce cell mortality through both apoptosis and necrosis mechanisms. Therefore, it may be concluded that the biological systems such as nervous system proteins can affect the colloidal stability of NPs and vice versa NPs in the biological systems can bind to proteins and cell membranes non-specifically and may induce toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2018.07.041DOI Listing

Publication Analysis

Top Keywords

sio nps
24
colloidal stability
16
nps
10
pc12 cells
8
cellular studies
8
tem dls
8
fluorescence spectroscopy
8
biological systems
8
sio
7
tau
5

Similar Publications

In chemical-enhanced oil recovery (cEOR), surfactants are widely used but face significant stability challenges in high-salinity brine, where they often degrade or precipitate. Existing methods, such as adding cosurfactants, offer limited compatibility with anionic surfactants and raise economic concerns, creating a need for more robust solutions. This study introduces a novel approach to enhance the stability of anionic surfactants in extreme salinity conditions by incorporating silicon dioxide (SiO) nanoparticles (NPs).

View Article and Find Full Text PDF

Nanoconfinement-induced shift in photooxidative degradation pathway of polystyrene.

J Colloid Interface Sci

December 2024

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States. Electronic address:

Polymer nanocomposites with high concentrations of nanoparticles (NPs) possess exceptional mechanical, transport, and thermal properties. To enable their widespread use in structural applications and functional coatings, it is crucial to understand how nanoconfinement and the polymer-NP interface influence polymer degradation under various environmental conditions, including prolonged UV exposure. In this study, we investigate the photooxidative degradation of polystyrene (PS)-confined in the interstices of SiO NP films.

View Article and Find Full Text PDF

Effects of orally exposed SiO nanoparticles on lipid profiles in gut-liver axis of mice.

Ecotoxicol Environ Saf

December 2024

Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China. Electronic address:

Recently we proposed the possibility of orally exposed nanoparticles (NPs) to alter metabolite homeostasis by changing metabolism pathways, in addition to intestinal damages, but relatively few studies investigated the changes of metabolite profiles in multi-organs. This study investigated the influences of orally exposed SiO NPs on lipid profiles in gut-liver axis. To this end, we treated mice with 16, 160 or 1600 mg/kg bodyweight SiO NPs via intragastric route.

View Article and Find Full Text PDF

Blast disease caused by is a devastating disease that limits rice grain production. Here, we synthesized rhamnolipid (RL) modified silica nanoparticles (SiONPs) based on the excellent antimicrobial activity of RL against various phytopathogens and the role of SiONPs in alleviating plant diseases and investigated the roles and mechanisms of RL@SiONPs application in controlling rice blast disease. Two-week-old rice seedlings were sprayed with 100 mL/L of different materials before pathogen inoculation, and blast incidence was investigated 5 days after inoculation.

View Article and Find Full Text PDF

Functionalization and volatilization are competing reactions during the oxidation of carbonaceous materials and are important processes in many different areas of science and technology. Here, we present a combined ambient pressure X-ray photoelectron spectroscopy (APXPS) and grazing incidence X-ray scattering (GIXS) investigation of the oxidation of oleic acid ligands surrounding NaYF nanoparticles (NPs) deposited onto SiO/Si substrates. While APXPS monitors the evolution of the oxidation products, GIXS provides insight into the morphology of the ligands and particles before and after the oxidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!