Several of the over 200 known species of Agave L. are currently used for production of distilled beverages and biopolymers. The plants live in a wide range of stressful environments as a result of their resistance to abiotic stress (drought, salinity, and extreme temperature) and pathogens, which gives the genus potential for germplasm conservation and biotechnological applications that may minimize economic losses as a result of the global climate change. However, the limited knowledge in the genus of genome structure and organization hampers development of potential improved biotechnological applications by means of genetic manipulation and biocatalysis. We reviewed Agave and plant sequences in the GenBank NCBI database for identifying genes with biotechnological potential for fermentation, bioenergy, fiber improvement, and in vivo plant biopolymer production. Three-dimensional modeling of enzyme structures in plant accessions revealed structural differences in sucrose 1-fructosyltransferase, fructan 1-fructosyltransferase, fructan exohydrolase (1-FEH), cellulose synthase (CES), and glucanases (EGases) with possible effects in fructan, sugar, and biopolymer production. Although the coding genes of FEH and enzymes involved in biopolymer production (CES, sucrose synthase, and EGases) remain unidentified in Agave L., our results could aid isolation of such genes in Agave. By comparing nucleotide and amino acid sequences in accessions of Agave and other plants, knowledge may be gained about transcriptional regulation and enzymatic activity factors. Future study is needed of biotechnological application of Agave genes for crop breeding aided by genetic engineering and biocatalysis. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1314-1334, 2018.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/btpr.2689 | DOI Listing |
Toxins (Basel)
January 2025
Multidisciplinary Agroindustry Research Laboratory, Carrera de Ingeniería en Construcción, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Talca 3460000, Chile.
Significant agro-industrial waste is produced during the winemaking process, including grape stalks, which are a rich source of the valuable biopolymer holocellulose that can be utilized for biotechnological processes. The purpose of this study was to delignify grape stalks in order to extract holocellulose. Then Lactobacillus plantarum (LP) was immobilized in the interstitial spaces of holocellulose and then coated with natural polymers (chitosan, Ch; and alginate, Al) to create the Holo-LP/Ch/Al complex.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye.
Chitosan, a multifaceted amino polysaccharide biopolymer derived from chitin, has extensive antibacterial efficacy against diverse pathogenic microorganisms, including both Gram-negative and Gram-positive bacteria, in addition to fungi. Over the course of the last several decades, chitosan nanoparticles (NPs), which are polymeric and bio-based, have garnered a great deal of interest as efficient antibacterial agents. This is mostly due to the fact that they are used in a wide variety of applications, including medical treatments, food, chemicals, and agricultural products.
View Article and Find Full Text PDFMar Drugs
January 2025
The Key Laboratory of Animal Genetic Resource and Breeding Innovation, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
Chitosan oligosaccharide (COS) is receiving increasing attention as a feed additive in animal production. COS has a variety of biological functions, including anti-inflammatory and antioxidant activities. Mastitis is a major disease in dairy cows that has a significant impact on animal welfare and production.
View Article and Find Full Text PDFMar Drugs
December 2024
CESAM-Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.
This review is focused on the research, innovation and technological breakthroughs on marine invertebrate collagens and their applications. The findings reveal that research dates back to the 1970s, and after a period of reduced activity, interest in collagens from several marine invertebrate groups was renewed around 2008, likely driven by the increased commercial interest in these biomolecules of marine origin. Research and development are predominantly reported from China and Japan, highlighting significant research interest in cnidarians (jellyfish), echinoderms (sea cucumbers, sea urchins and starfish), molluscs (squid and cuttlefish) and sponges.
View Article and Find Full Text PDFGels
January 2025
School of Product Design, University of Canterbury, Christchurch 8041, New Zealand.
This study investigates the 3D extrusion printing of a carboxymethyl cellulose (CMC)-gelatin complex coacervate system. Various CMC-gelatin coacervate hydrogels were prepared and analyzed to achieve this goal. The impact of the CMC-gelatin ratio, pH, and total biopolymer concentration on coacervation formation and rheological properties was evaluated to characterize the printability of the samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!