Background: There is epidemiological evidence that fruits and vegetables promote general health due to their phenolic composition. The phenolic composition of three commercially important citrus varieties ('Mandarin', 'Navel' orange and 'Valencia' orange), used for frozen concentrated orange juice (FCOJ) production in South Africa, were evaluated based on variety, production season and geographical region (Western Cape (WC) and Eastern Cape (EC)).

Results: FCOJ from the WC had significantly (P < 0.05) lower titratable acidity (TA) and higher total soluble solids (TSS):TA ratio compared to FCOJ produced in the EC. The 'Navel' FCOJ, irrespective of season and region, had the highest (P < 0.05) phenolic content (sum of quantified compounds, TP). Regional effects were clear for the 'Mandarin' variety, the EC 'Mandarin' FCOJ had the highest TP and WC 'Mandarin' had the lowest. Seasonal differences were less evident. Variation that could be ascribed to regional differences were also found for individual phenolic compounds.

Conclusion: Robust data regarding the phenolic profile of FCOJ produced in South Africa, suitable for inclusion in food composition databases, were collected. © 2018 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.9267DOI Listing

Publication Analysis

Top Keywords

phenolic composition
12
frozen concentrated
8
concentrated orange
8
orange juice
8
regional differences
8
south africa
8
fcoj produced
8
phenolic
6
fcoj
6
composition total
4

Similar Publications

Investigate the impact of antimicrobial photodynamic therapy (aPDT) using different photosensitizers (PSs) such as indocyanine green (IG), curcumin (CC), and methylene blue (MB), with or without intracanal application of calcium hydroxide (CH), on the push-out bond strength of glass-fiber posts (GFPs) to intraradicular dentin, the chemical composition of the root substrate, and the sealing of the adhesive interface across different thirds of intraradicular dentin. A total of 112 bovine teeth underwent biomechanical preparation and were divided into eight experimental groups (n = 14 each): Negative control with deionized water; positive control with deionized water + CH; IG group with indocyanine green and infrared laser; IG + CH group; CC group with curcumin and blue LED; CC + CH group; MB group with methylene blue and red laser; and MB + CH group. The push-out bond strength was measured using a universal testing machine (n = 8), and scanning electron microscopy characterized the fracture patterns.

View Article and Find Full Text PDF

An antibacterial, antioxidant and hemostatic hydrogel accelerates infectious wound healing.

J Nanobiotechnology

January 2025

Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.

Hydrogel drug-delivery system that can effectively load antibacterial drugs, realize the in-situ drug release in the microenvironment of wound infection to promote wound healing. In this study, a multifunctional hydrogel drug delivery system (HA@TA-Okra) was constructed through the integration of hyaluronic acid methacrylate (HAMA) matrix with tannic acid (TA) and okra extract. The composition and structural characteristics of HA@TA-Okra system and its unique advantages in the treatment of diverse wounds were systematically evaluated.

View Article and Find Full Text PDF

Background: Acute ischemic stroke treatment typically involves tissue-type plasminogen activator (tPA) or tenecteplase, but about 50% of patients do not achieve successful reperfusion. The causes of tPA resistance, influenced by thrombus composition and timing, are not fully clear. Neutrophil extracellular traps (NETs), associated with poor outcomes and reperfusion resistance, contribute to thrombosis.

View Article and Find Full Text PDF

Unlabelled: In this study, the changes in the physicochemical properties, color stability, and amino acid composition of cemen paste (CP) produced by adjusting to different pH levels (3.0, 4.0, 5.

View Article and Find Full Text PDF

An introduction to antibacterial materials in composite restorations.

JADA Found Sci

October 2024

Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR.

The longevity of direct esthetic restorations is severely compromised because of, among other things, a loss of function that comes from their susceptibility to biofilm-mediated secondary caries, with being the most prevalent associated pathogen. Strategies to combat biofilms range from dental compounds that can disrupt multispecies biofilms in the oral cavity to approaches that specifically target caries-causing bacteria such as . One strategy is to include those antibacterial compounds directly in the material so they can be available long-term in the oral cavity and localized at the margin of the restorations, in which many of the failures initiate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!