Porous structure has been widely acknowledged as important factor for mass transfer and tissue regeneration. This study investigates effect of aimed-control design on mass transfer and tissue regeneration of porous implant with regular unit cell. Two shapes of unit cells (Octet truss, and Rhombic dodecahedron) were selected, which have similar symmetrical structure and are commonly used in practice. Through parametric design, porous scaffolds with the strut sizes of 0.5, 0.7, 0.9, and 1.1mm were created, respectively. Then using fluid flow simulation method, flow velocity, permeability, and shear stress which could reflect the properties of mass transfer and tissue regeneration were compared and evaluated, and the relationships between porous structure's physical parameters and flow performance were studied. Results demonstrated that unit cell shape and strut size greatly determine and influence other physical parameters and flow performances of porous implant. With the increasing of strut size, pore size and porosity linearly decrease, but the volume, surface area, and specific surface area increased. Importantly, implant with smaller strut size resulted in smaller flow velocity directly but greater permeability and more appropriate shear stress, which should be beneficial to cell attachment and proliferation. This study confirmed that porous implant with different unit cell shows different performances of mass transfer and tissue regeneration, and unit cell shape and strut size play vital roles in the control design. These findings could facilitate the quantitative assessment and optimization of the porous implant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6020664 | PMC |
http://dx.doi.org/10.1155/2018/1215021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!